Nothing
one_resample_analysis_check = function(platzhalter, y.iid, L, nscore.obj, coords, max.dist, nbins, threshold.factor, fit.method = 7){
# (6) resampling from y.iid
resmpl = sample(y.iid, size = length(y.iid), replace = T)
# (7) recorrelate the resmpl
resmpl = L%*%resmpl
# (8) backtransformation of the sample
resmpl = backtr(resmpl, nscore = nscore.obj, tails="none", draw=F)
# (9) repeat steps (6)-(8) <- repeating (6),(7),(8) and (10) is done by
# repeating this function application
# (10) semivariogram model estimation, wls
# if (fit.method == 8){
# wls.est = sv.sep2_nlm(resmpl, coords = coords, max.dist = max.dist, nbins = nbins)
# warning = NULL
# }
# else{
wls = sv.sep(resmpl, coords = coords, max.dist = max.dist, nbins = nbins, fit.method = fit.method)
wls.est = wls$mod.pars
emp.var = stats::var(resmpl)
mod.var = wls.est[1] + wls.est[2]
## check, whether
# ## 1. variance estimated by the model (c_0+sigma_sq) exceeds
# the empirical variance*factor OR
# ## 2. re_estimated shape parameter phi < 0 (<- actually happens in model fitting!)
# applied factors and nr of factors according to input argument "threshold.factor"
nr.thr = length(threshold.factor)
wls.threshold.outcomes = rep(0, 4 + nr.thr) # 1-3 estimates, 4 convergence check, 5-... check filter
wls.threshold.outcomes[1:3] = wls.est
if(wls$warning | wls.est[3] == "Inf") wls.threshold.outcomes[4] = 1
for(i in 1:nr.thr){
if(mod.var > threshold.factor[i]*emp.var | wls.est[3] < 0){ # check filter
wls.threshold.outcomes[4 + i] = 1
}
}
# vector with:
# - estimates
# - convergence warning information
# - check filter information
return(wls.threshold.outcomes)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.