inst/doc/ExactVaRTest-intro.R

## ----include = FALSE----------------------------------------------------------
NOT_CRAN <- identical(Sys.getenv("NOT_CRAN"), "true")

knitr::opts_chunk$set(
  collapse = TRUE,
  comment  = "#>",
  eval     = NOT_CRAN,
  echo     = TRUE
)

## ----setup--------------------------------------------------------------------
# library(ExactVaRTest)

## ----message=FALSE, warning=FALSE---------------------------------------------
# library(bench)
# library(dplyr)
# library(tidyr)
# library(purrr)
# library(knitr)
# 
# n_vec     <- c(50, 100, 250, 500, 750, 1000)
# alpha_vec <- c(0.01, 0.025, 0.05)
# 
# grid <- expand.grid(n = n_vec, alpha = alpha_vec, KEEP.OUT.ATTRS = FALSE)
# 
# bench_one <- function(n, alpha, fun) {
#   bm <- bench::mark(
#     fun(n = n, alpha = alpha),
#     iterations = 3,
#     check = FALSE
#   )
#   tibble(
#     n        = n,
#     alpha    = alpha,
#     median_s = as.numeric(bm$median)
#   )
# }
# 
# timings_ind <- pmap_dfr(grid, bench_one, fun = lr_ind_dist)
# 
# timings_cc  <- pmap_dfr(grid, bench_one, fun = lr_cc_dist)
# 
# fmt_wide <- function(df) {
#   df %>%
#     mutate(alpha = sprintf("alpha = %.3f", alpha)) %>%
#     pivot_wider(names_from = alpha, values_from = median_s) %>%
#     arrange(n)
# }
# 
# table_ind <- fmt_wide(timings_ind)
# table_cc  <- fmt_wide(timings_cc)
# 
# kable(
#   table_ind,
#   digits = 3,
#   col.names = c("n", "α = 0.010", "α = 0.025", "α = 0.050"),
#   caption   = "Median run-time (seconds) for lr_ind_dist()"
# )
# 
# kable(
#   table_cc,
#   digits = 3,
#   col.names = c("n", "α = 0.010", "α = 0.025", "α = 0.050"),
#   caption   = "Median run-time (seconds) for lr_cc_dist()"
# )

## ----message=FALSE, warning=FALSE---------------------------------------------
# library(xts)
# 
# alpha  <- 0.01
# window <- 250
# 
# local_file <- "inst/extdata/GSPC_close.rds"
# file_path  <- if (file.exists(local_file)) local_file else
#               system.file("extdata", "GSPC_close.rds", package = "ExactVaRTest")
# 
# px  <- readRDS(file_path)
# ret <- diff(log(px), lag = 1)
# 
# VaR <- rollapply(
#   ret, window,
#   function(r) quantile(r, alpha, na.rm = TRUE),
#   by.column = FALSE, align = "right"
# )
# 
# keep <- complete.cases(ret, VaR)
# ret  <- ret[keep]
# VaR  <- coredata(VaR[keep])
# 
# x <- ifelse(coredata(ret) < VaR, 1L, 0L)
# 
# cat("Series length :", length(x), "\n")
# cat("Exception rate:", mean(x), "\n\n")
# 
# bench_res <- bench::mark(
#   LR_ind = backtest_lr(x, alpha, "ind"),
#   LR_cc  = backtest_lr(x, alpha, "cc"),
#   iterations = 10,
#   check      = FALSE
# )
# 
# suppressWarnings(
#   print(bench_res[, c("expression", "median")])
# )
# 
# res_ind <- backtest_lr(x, alpha, "ind")
# res_cc  <- backtest_lr(x, alpha, "cc")
# 
# cat("\n--- Independence test ---\n")
# print(res_ind)
# 
# cat("\n--- Conditional-coverage test ---\n")
# print(res_cc)

## ----message=FALSE, warning=FALSE---------------------------------------------
# n      <- 250
# alpha  <- 0.01
# 
# d_ind <- lr_ind_dist(n, alpha)
# d_cc <- lr_cc_dist(n, alpha)
# d_cc$LR   <- d_cc$LR_cc
# d_cc$prob <- d_cc$prob_cc
# 
# oldpar <- par(mfrow = c(1, 2), mar = c(4, 4, 2, 1))
# 
# # LR_ind vs χ²(1)
# curve(pchisq(x, df = 1), 0, 20, lty = 2, ylab = "CDF",
#       xlab = "LR_ind statistic", main = "LR_ind")
# lines(stepfun(d_ind$LR, c(0, cumsum(d_ind$prob))), pch = 19)
# legend("bottomright", c("Chi-sq(1)", "Exact"), lty = c(2, 1), bty = "n")
# 
# # LR_cc vs χ²(2)
# curve(pchisq(x, df = 2), 0, 30, lty = 2, ylab = "CDF",
#       xlab = "LR_cc statistic", main = "LR_cc")
# lines(stepfun(d_cc$LR, c(0, cumsum(d_cc$prob))), pch = 19)
# legend("bottomright", c("Chi-sq(2)", "Exact"), lty = c(2, 1), bty = "n")
# 
# par(oldpar)

## ----message=FALSE, warning=FALSE---------------------------------------------
# n     <- 250
# alpha <- 0.01
# set.seed(1)
# 
# # LR_cc
# p.chi.cc <- replicate(
#   1000,
#   ExactVaRTest::lr_cc_stat(rbinom(n, 1, alpha), alpha) > qchisq(.95, 2)
# )
# p.exact.cc <- replicate(
#   1000,
#   {
#     x <- rbinom(n, 1, alpha)
#     ExactVaRTest::backtest_lr(x, alpha, "cc")$pval < 0.05
#   }
# )
# 
# # LR_ind
# p.chi.ind <- replicate(
#   1000,
#   ExactVaRTest::lr_ind_stat(rbinom(n, 1, alpha), alpha) > qchisq(.95, 1)
# )
# p.exact.ind <- replicate(
#   1000,
#   {
#     x <- rbinom(n, 1, alpha)
#     ExactVaRTest::backtest_lr(x, alpha, "ind")$pval < 0.05
#   }
# )
# 
# data.frame(
#   Test = c("LR_cc Chi^2", "LR_cc Exact", "LR_ind Chi^2", "LR_ind Exact"),
#   Size = c(mean(p.chi.cc), mean(p.exact.cc), mean(p.chi.ind), mean(p.exact.ind))
# )

## ----message=FALSE, warning=FALSE---------------------------------------------
# library(ggplot2)
# library(dplyr)
# library(tidyr)
# 
# alpha <- 0.01
# win   <- 250
# 
# local_file <- "inst/extdata/GSPC_close.rds"
# file_path  <- if (file.exists(local_file)) local_file else
#               system.file("extdata", "GSPC_close.rds", package = "ExactVaRTest")
# 
# px  <- readRDS(file_path)
# px  <- px[index(px) >= "2012-01-01"]
# 
# ret <- diff(log(px))
# 
# VaR <- rollapply(
#   ret, win,
#   function(r) quantile(r, alpha, na.rm = TRUE),
#   by.column = FALSE, align = "right"
# )
# 
# keep <- complete.cases(ret, VaR)
# r  <- coredata(ret[keep])
# v  <- coredata(VaR[keep])
# exc <- ifelse(r < v, 1L, 0L)
# 
# n_seg <- length(exc) - win + 1
# ind_exact <- ind_chi <- cc_exact <- cc_chi <- numeric(n_seg)
# 
# for (i in seq_len(n_seg)) {
#   seg <- exc[i:(i + win - 1)]
#   ind_stat <- ExactVaRTest::lr_ind_stat(seg, alpha)
#   cc_stat  <- ExactVaRTest::lr_cc_stat(seg, alpha)
#   ind_exact[i] <- ExactVaRTest::pval_lr_ind(ind_stat, win, alpha)
#   cc_exact[i]  <- ExactVaRTest::pval_lr_cc(cc_stat,  win, alpha)
#   ind_chi[i]   <- pchisq(ind_stat, df = 1, lower.tail = FALSE)
#   cc_chi[i]    <- pchisq(cc_stat,  df = 2, lower.tail = FALSE)
# }
# 
# df <- tibble(
#   idx = seq_len(n_seg),
#   ind_exact, ind_chi, cc_exact, cc_chi
# ) %>%
#   pivot_longer(cols = -idx,
#                names_to  = c("test", "method"),
#                names_pattern = "(ind|cc)_(.*)",
#                values_to = "pval") %>%
#   mutate(test = ifelse(test == "ind", "LRind", "LRcc"),
#          method = ifelse(method == "exact", "exact", "chi-sq"))
# 
# ggplot(df, aes(idx, pval, colour = method)) +
#   geom_step() +
#   geom_hline(yintercept = 0.05, linetype = 2, colour = "red") +
#   facet_wrap(~ test, ncol = 1, scales = "free_x") +
#   scale_colour_manual(values = c("chi-sq" = "red", "exact" = "cyan4")) +
#   labs(x = "window start index", y = "p-value",
#        title = "Rolling 250-day p-values (α = 1%)") +
#   theme_bw()

## ----example------------------------------------------------------------------
# library(ExactVaRTest)
# 
# n_set      <- c(250, 500, 750, 1000)
# alpha_set  <- c(0.005, 0.01, 0.025, 0.05)
# gamma_set  <- c(0.90, 0.95, 0.99)
# 
# q_lr <- function(d, g) d$LR[which(cumsum(d$prob) >= g)[1L]]
# 
# tbl <- expand.grid(n = n_set,
#                    alpha = alpha_set,
#                    gamma = gamma_set,
#                    KEEP.OUT.ATTRS = FALSE,
#                    stringsAsFactors = FALSE)
# 
# tbl$crit_ind <- mapply(function(n, a, g)
#   q_lr(lr_ind_dist(n, a, prune_threshold = 1e-15), g),
#   tbl$n, tbl$alpha, tbl$gamma, SIMPLIFY = TRUE)
# 
# tbl$crit_cc <- mapply(function(n, a, g) {
#   d <- lr_cc_dist(n, a, prune_threshold = 1e-15)
#   d$LR   <- d$LR_cc
#   d$prob <- d$prob_cc
#   q_lr(d, g)
# }, tbl$n, tbl$alpha, tbl$gamma, SIMPLIFY = TRUE)
# 
# print(tbl, digits = 6)

## ----message=FALSE, warning=FALSE---------------------------------------------
# library(ExactVaRTest)
# 
# set.seed(123)
# 
# P            <- 250
# alpha        <- 0.05
# alpha_prime  <- 0.10
# 
# inst_flag <- rbinom(P, 1, alpha_prime)
# sys_flag  <- if (sum(inst_flag)) rbinom(sum(inst_flag), 1, alpha) else integer(0)
# 
# lr_uc  <- lr_uc_stat(sys_flag,  alpha)
# lr_ind <- lr_ind_stat(sys_flag, alpha)
# 
# mix_tail <- function(lr_obs, P, alpha, alpha_prime,
#                      type = c("uc", "ind"), prune = 1e-15) {
#   type <- match.arg(type)
#   w    <- dbinom(0:P, P, alpha_prime)
# 
#   tail_prob <- function(k) {
#     if (type == "uc") {
#       if (!k) return(as.numeric(lr_obs <= 0))
#       d <- lr_uc_dist(k, alpha)
#       sum(d$prob[d$LR >= lr_obs])
#     } else {
#       if (k < 2) return(as.numeric(lr_obs <= 0))
#       d <- lr_ind_dist(k, alpha, prune)
#       sum(d$prob[d$LR >= lr_obs])
#     }
#   }
# 
#   sum(vapply(0:P, tail_prob, numeric(1)) * w)
# }
# 
# p_uc  <- mix_tail(lr_uc,  P, alpha, alpha_prime, "uc")
# p_ind <- mix_tail(lr_ind, P, alpha, alpha_prime, "ind")
# 
# data.frame(
#   test = c("UC", "IND"),
#   stat = c(lr_uc, lr_ind),
#   p    = c(p_uc, p_ind)
# )

## ----session-info, echo=FALSE-------------------------------------------------
# sessionInfo()

Try the ExactVaRTest package in your browser

Any scripts or data that you put into this service are public.

ExactVaRTest documentation built on Aug. 23, 2025, 1:11 a.m.