statistic.cv | R Documentation |
statistic.cv
returns the critical value of the distribution of the test statistics from statistic.sim
based on the specified confidence level. However, it is not recommended for general usage. It is recommedned that the exceedance.ci
function be used to automatically create confidence regions.
statistic.cv(statistic.sim.obj, conf.level = 0.95)
statistic.sim.obj |
An object returned from the |
conf.level |
The desired confidence level of the confidence interval we want to construct. |
Returns the desired critical value.
Joshua French
library(SpatialTools)
# Example for exceedance regions
set.seed(10)
# Load data
data(sdata)
# Create prediction grid
pgrid <- create.pgrid(0, 1, 0, 1, nx = 26, ny = 26)
pcoords <- pgrid$pgrid
# Create design matrices
coords = cbind(sdata$x1, sdata$x2)
X <- cbind(1, coords)
Xp <- cbind(1, pcoords)
# Generate covariance matrices V, Vp, Vop using appropriate parameters for
# observed data and responses to be predicted
spcov <- cov.sp(coords = coords, sp.type = "exponential", sp.par = c(1, 1.5),
error.var = 1/3, finescale.var = 0, pcoords = pcoords)
# Predict responses at pgrid locations
krige.obj <- krige.uk(y = as.vector(sdata$y), V = spcov$V, Vp = spcov$Vp,
Vop = spcov$Vop, X = X, Xp = Xp, nsim = 100,
Ve.diag = rep(1/3, length(sdata$y)) , method = "chol")
# Simulate distribution of test statistic for different alternatives
statistic.sim.obj.less <- statistic.sim(krige.obj = krige.obj, level = 5,
alternative = "less")
statistic.sim.obj.greater <- statistic.sim(krige.obj = krige.obj, level = 5,
alternative = "greater")
# Calculate quantiles of distribution of statistic
q90.less <- statistic.cv(statistic.sim.obj.less, conf.level = .90)
q90.greater <- statistic.cv(statistic.sim.obj.greater, conf.level = .90)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.