GenPARETO | R Documentation |
Density, distribution function, quantile function and random generation for the generalized Pareto distribution with shape and scale parameters equal to shape
and scale
, respectively.
dgp(x,shape=1,scale=1,log=FALSE) pgp(q,shape=1,scale=1,lower.tail=TRUE,log.p=FALSE) qgp(p,shape=1,scale=1,lower.tail=TRUE,log.p=FALSE) rgp(n,shape=1,scale=1)
x,q |
vector of quantiles. |
p |
vector of probabilities. |
n |
number of observations. |
shape |
shape parameter. |
scale |
scale parameter. |
log,log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x],otherwise, P[X > x]. |
If X is a random variable distributed according to a generalized Pareto distribution, it has density
f(x) = 1/scale*(1-shape*x/scale)^((1-shape)/shape)
dgp
gives the density, pgp
gives the distribution function, qgp
gives the quantile function, and rgp
generates random deviates.
Coles, S. (2001) An introduction to statistical modeling of extreme values. Springer
x <- rgp(1000,-.2,10) hist(x,freq=FALSE,col='gray',border='white') curve(dgp(x,-.2,10),add=TRUE,col='red4',lwd=2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.