| GenPARETO | R Documentation |
Density, distribution function, quantile function and random generation for the generalized Pareto distribution with shape and scale parameters equal to shape and scale, respectively.
dgp(x,shape=1,scale=1,log=FALSE) pgp(q,shape=1,scale=1,lower.tail=TRUE,log.p=FALSE) qgp(p,shape=1,scale=1,lower.tail=TRUE,log.p=FALSE) rgp(n,shape=1,scale=1)
x,q |
vector of quantiles. |
p |
vector of probabilities. |
n |
number of observations. |
shape |
shape parameter. |
scale |
scale parameter. |
log,log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x],otherwise, P[X > x]. |
If X is a random variable distributed according to a generalized Pareto distribution, it has density
f(x) = 1/scale*(1-shape*x/scale)^((1-shape)/shape)
dgp gives the density, pgp gives the distribution function, qgp gives the quantile function, and rgp generates random deviates.
Coles, S. (2001) An introduction to statistical modeling of extreme values. Springer
x <- rgp(1000,-.2,10) hist(x,freq=FALSE,col='gray',border='white') curve(dgp(x,-.2,10),add=TRUE,col='red4',lwd=2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.