Nothing
# Wrangling UI Modules
# mod_wrangling_ui.R dosyasının içeriği (varsa library() çağrıları silinmiş olarak)
# ---------------------------------------------------------------------------
# UI Module for Excluding Variables
# ---------------------------------------------------------------------------
#' UI Module for Excluding Variables
#'
#' Provides UI elements for users to specify and exclude variables from a dataset.
#'
#' @param id A character string, the module id.
#' @return A UI definition.
#' @import shiny
#' @importFrom shinydashboard box
#' @importFrom shinycssloaders withSpinner
#' @noRd
wrangling_ui_ex_var <- function(id) {
ns <- NS(id) # Namespace function
tagList(
fluidRow(
column(width = 6, # Adjust width as needed
box(
title = "Exclude Variables from Dataset",
collapsible = TRUE,
status = "primary", # Changed status for a more descriptive action
solidHeader = TRUE,
width = NULL, # Box will take the full width of the column
strong("To exclude specific variables (columns) from your dataset, please enter their column numbers, separated by commas (e.g., 1,3,5). Please note that excluding variables here will immediately update your dataset, and subsequent analyses will be performed on the dataset without the excluded variables."),
br(),br(),
textInput(
ns("excluded_variables_input"), # Changed ID slightly for clarity
label = "Enter column numbers to exclude:",
placeholder = "e.g., 1,3,5 or 2:4,6" # Added example for range
),
actionButton(ns("exclude_button"), "Exclude Selected Variables", icon = icon("columns")), # Changed ID & icon
br(), br(),
em("After excluding variables, you can save the modified dataset."),
br(),
downloadButton(ns("download_excluded_data_button"), "Save Dataset (Variables Excluded)", icon = icon("download")) # Changed ID
)
)
)
)
}
# ---------------------------------------------------------------------------
# UI Module for Splitting Data
# ---------------------------------------------------------------------------
#' UI Module for Splitting Dataset
#'
#' Provides UI elements for users to split their dataset into two subsets.
#'
#' @param id A character string, the module id.
#' @return A UI definition.
#' @import shiny
#' @importFrom shinydashboard box
#' @noRd
wrangling_ui_split <- function(id) {
ns <- NS(id) # Namespace function
tagList(
fluidRow(
column(width = 6, # Adjust width
box(
title = "Split Dataset for Cross-Validation",
collapsible = TRUE,
status = "primary",
solidHeader = TRUE,
width = NULL,
strong(
"This function allows you to randomly split your current dataset into two subsets (e.g., for Exploratory Factor Analysis (EFA) and Confirmatory Factor Analysis (CFA) or for cross-validation purposes)."
),
br(),
sliderInput(ns("split_percentage_slider"), "Percentage for First Subset (e.g., EFA set):", min = 10, max = 90, value = 50, step = 5, post = "%"),
actionButton(ns("split_data_button"), "Split Data", icon = icon("object-ungroup")), # Changed ID & icon
br(), br(),
em("Save the generated subsets:"),
br(),
downloadButton(ns("download_first_subset_button"), "Save First Subset", icon = icon("download")), # Changed ID
downloadButton(ns("download_second_subset_button"), "Save Second Subset", icon = icon("download")) # Changed ID
)
)
)
)
}
# ---------------------------------------------------------------------------
# UI Module for Handling Outliers
# ---------------------------------------------------------------------------
#' UI Module for Handling Multivariate Outliers
#'
#' Provides UI elements for detecting and managing multivariate outliers.
#'
#' @param id A character string, the module id.
#' @return A UI definition.
#' @import shiny
#' @importFrom shinydashboard box
#' @importFrom shinycssloaders withSpinner
#' @noRd
wrangling_ui_outliers <- function(id) {
ns <- NS(id) # Namespace function
tagList(
fluidRow(
column(width = 7, # Adjust width
box(
title = "Manage Multivariate Outliers",
collapsible = TRUE,
status = "primary",
solidHeader = TRUE,
width = NULL,
strong(
"Detect multivariate outliers using Mahalanobis Distance (MD).",br(),
"Observations with a Mahalanobis p-value less than a specified threshold (e.g., 0.001) are typically considered outliers."
),
br(),br(),
numericInput(ns("mah_p_value_threshold_input"), "P-value threshold for outlier detection (e.g., 0.001):", value = 0.001, min = 0.00001, max = 0.05, step = 0.0001),
actionButton(ns("check_outliers_button"), "Identify Outliers", icon = icon("search")), # Changed ID
br(), br(),
h4("Detected Outliers:"),
textOutput(ns("outlier_count_text")), # For displaying count
tableOutput(ns("outliers_table")) %>% withSpinner(type = 8, color = "#728FCE"), # Changed ID
br(),
actionButton(ns("remove_outliers_button"), "Remove Identified Outliers", icon = icon("user-minus"), class = "btn-danger"), # Added class for styling
br(), br(),
em("Save the dataset after removing outliers:"),
br(),
downloadButton(ns("download_data_no_outliers_button"), "Save Data (Outliers Removed)", icon = icon("download")) # Changed ID
)
)
)
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.