FBMS-Flexible Bayesian Model Selection and Model Averaging

This vignette introduces the FBMS package and shows how to perform Flexible Bayesian Model Selection (BMS) and Bayesian Model Averaging (BMA) for linear, generalized, nonlinear, fractional–polynomial, mixed–effect, and logic–regression models. More details are provided in the paper: "FBMS: An R Package for Flexible Bayesian Model Selection and Model Averaging" available on arxiv: more explicit examples accompanying the paper can be found on github https://github.com/jonlachmann/GMJMCMC/tree/data-inputs/tests_current


Setup

Load technical markdown settings and a custom function for printing only what is needed through printn().

knitr::opts_chunk$set(
  message = TRUE,  # show package startup and other messages
  warning = FALSE, # suppress warnings
  echo    = TRUE,  # show code
  results = "hide" # hide default printed results unless printed via printn()
)

# For careful printing of only what I explicitly ask for
printn <- function(x) {
  # Capture the *exact* console print output as a character vector
  txt <- capture.output(print(x))
  # Combine lines with newline, send as a message to be shown in output
  message(paste(txt, collapse = "\n"))
}

library(FBMS)
library(FBMS)

Bayesian Model Selection and Averaging

  1. Consider a class of models: $\Omega: m_1(Y|X,\theta_1), \dots, m_k(Y|X,\theta_k)$.\
  2. Assign priors to models $P(m_1), \dots, P(m_k)$ and parameters $P(\theta_j|m_j)$.\
  3. Obtain joint posterior $P(m_j,\theta_j|D)$.\
  4. Make inference on a quantity of interest $\Delta$.

Show equations

$$ P(\Delta|D) = \sum_{m\in\Omega} P(m|D)\, \int_{\Theta_m} P(\Delta|m,\theta,D)\, P(\theta|m,D)\, d\theta. $$

Bayesian Generalized Nonlinear Model (BGNLM)

Reference: [@hubin2020flexible]

Show equations

$$ \begin{aligned} Y_i \mid \mu_i, \phi &\sim \mathfrak{f}(y \mid \mu_i,\phi), \quad i = 1,\dots,n,\ \mathsf{h}(\mu_i) &= \beta_0 + \sum_{j=1}^{q} \gamma_j \beta_j F_j(\mathbf{x}i, \boldsymbol{\alpha}_j) + \sum{k=1}^{r} \delta_k. \end{aligned} $$

Feature space

Depending on allowed nonlinear functions $\mathbb{G}$: neural nets (sigmoid), decision trees (thresholds), MARS (hinges), fractional polynomials, logic regression, etc.

Transformations available in FBMS

| Name | Function | Name | Function | |---------|---------------------------|---------|--------------------------| | sigmoid | $1 / (1 + \exp(-x))$ | sqroot | $|x|^{1/2}$ | | relu | $\max(x, 0)$ | troot | $|x|^{1/3}$ | | nrelu | $\max(-x, 0)$ | sin_deg | $\sin(x/180 \cdot \pi)$ | | hs | $x > 0$ | cos_deg | $\cos(x/180 \cdot \pi)$ | | nhs | $x < 0$ | exp_dbl | $\exp(-|x|)$ | | gelu | $x \Phi(x)$ | gauss | $\exp(-x^2)$ | | ngelu | $-x \Phi(-x)$ | erf | $2 \Phi(\sqrt{2}x) - 1$ | | pm2 | $x^{-2}$ | p0pm2 | $p0(x) \cdot x^{-2}$ | | pm1 | $\text{sign}(x) |x|^{-1}$ | p0pm05 | $p0(x) \cdot |x|^{-0.5}$ | | pm05 | $|x|^{-0.5}$ | p0p0 | $p0(x)^2$ | | p05 | $|x|^{0.5}$ | p0p05 | $p0(x) \cdot |x|^{0.5}$ | | p2 | $x^2$ | p0p1 | $p0(x) \cdot x$ | | p3 | $x^3$ | p0p2 | $p0(x) \cdot x^2$ | | | | p0p3 | $p0(x) \cdot x^3$ |

Custom functions can be added to $\mathbb{G}$.


Priors

Model priors

Let $M = (\gamma_1, \dots, \gamma_q)$ (for linear models $q=p$).

Penalizing complexity priors

Show equation

$$ P(M) \propto \mathbb{I}(|\boldsymbol\gamma_{1:q}| \le Q) \prod_{j=1}^q r^{\gamma_j c(F_j(\mathbf{x}, \boldsymbol{\alpha}_j))}, \quad 0 < r < 1, $$

  • $c(F_j(\cdot))$: complexity measure (linear models: $c(x)=1$; BGNLM counts algebraic operators).

The following parameter will be used to change the prior penalization.

# model prior complexity penalty 
model_prior = list(r = 0.005) #default is 1/n

Parameter priors

Mixtures of g-priors

Show equations

$$ \begin{aligned} P(\beta_0, \phi \mid M) &\propto \phi^{-1}, \ P(\boldsymbol{\beta} \mid g) &\sim \mathbb{N}_{|M|}!\left(\mathbf{0},\, g \cdot \phi\, J_n(\boldsymbol{\beta})^{-1}\right), \ \frac{1}{1+g} &\sim \text{tCCH}!\left(\frac{a}{2}, \frac{b}{2}, \rho, \frac{s}{2}, v, \kappa\right). \end{aligned} $$

Jeffreys prior

Show equations

$$ P(\phi \mid M) = \phi^{-1}, \quad P(\beta_0, \boldsymbol{\beta} \mid M) = |J_n(\beta_0, \boldsymbol{\beta})|^{1/2}. $$

All priors from the table below (default is the g-prior)

Parameter priors available (and where to tune)

| Prior (Alias) | $a$ | $b$ | $\rho$ | $s$ | $v$ | $k$ | Families | |----|----|----|----|----|----|----|----| | Default: | | | | | | | | | g-prior | $g$ (default: $\max(n, p^2)$) | | | | | | GLM | | tCCH-Related Priors: | | | | | | | | | CH | $a$ | $b$ | 0 | $s$ | 1 | 1 | GLM | | uniform | 2 | 2 | 0 | 0 | 1 | 1 | GLM | | Jeffreys | 0 | 2 | 0 | 0 | 1 | 1 | GLM | | beta.prime | $1/2$ | $n - p_M - 1.5$ | 0 | 0 | 1 | 1 | GLM | | benchmark | 0.02 | $0.02 \max(n, p^2)$ | 0 | 0 | 1 | 1 | GLM | | TG | $2a$ | 2 | 0 | $2s$ | 1 | 1 | GLM | | ZS-adapted | 1 | 2 | 0 | $n + 3$ | 1 | 1 | GLM | | robust | 1 | 2 | 1.5 | 0 | $(n+1)/(p_M+1)$ | 1 | GLM | | hyper-g-n | 1 | 2 | 1.5 | 0 | 1 | $1/n$ | GLM | | intrinsic | 1 | 1 | 1 | 0 | $(n + p_M + 1)/(p_M + 1)$ | $(n + p_M + 1)/n$ | GLM | | tCCH | $a$ | $b$ | $\rho$ | $s$ | $v$ | $k$ | GLM | | Other Priors: | | | | | | | | | EB-local | $a$ | | | | | | GLM | | EB-global | $a$ | | | | | | G | | JZS | $a$ | | | | | | G | | ZS-null | $a$ | | | | | | G | | ZS-full | $a$ | | | | | | G | | hyper-g | $a$ | | | | | | GLM | | hyper-g-laplace | $a$ | | | | | | G | | AIC | None | | | | | | GLM | | BIC | None | | | | | | GLM | | Jeffreys-BIC | Var | | | | | | GLM |

Here $p_M$ is the number of predictors excluding the intercept. "G" denotes Gaussian-only; "GLM" additionally includes binomial, Poisson, and gamma.

How to switch priors in code (be explicit):

# g-prior with g = 1000
beta_prior = list(type = "g-prior", alpha = 1000)

# Robust prior (tune by Table parameters)
beta_prior = list(type = "robust")

# Jeffreys-BIC
beta_prior = list(type = "Jeffreys-BIC")

# Generic tCCH (provide all hyperparameters explicitly)
beta_prior = list(type = "tCCH", a = 2, b = 2, rho = 0, s = 0, v = 1, k = 1)

Inference algorithms

Model posterior

Show equations

Marginal likelihood $$ P(D|M) = \int_{\Theta_M} P(D|\theta_M, M) \, P(\theta_M|M) \, d\theta_M. $$

Posterior $$ P(M|D) = \frac{P(D|M) P(M)}{\sum_{M' \in \Omega} P(D|M') P(M')}. $$

Approximation over discovered models $\Omega^$ $$ P(M|D) \approx \frac{P(D|M) P(M)}{\sum_{M' \in \Omega^} P(D|M') P(M')}, \quad M \in \Omega^*. $$

Marginal inclusion probability $$ P(\gamma_j=1|D) \approx \sum_{M \in \Omega^*: \gamma_j=1} P(M|D). $$

MCMC, MJMCMC, GMJMCMC

Parallelization

Run multiple chains and aggregate unique models $\Omega^*$:

Show equation

$$ \widehat{P}(\Delta|D) = \sum_{M \in \Omega^*} P(\Delta|M,D) \, \widehat{P}(M|D). $$

# Parameters for parallel runs are set to a single thread and single core to comply with CRAN requirenments (please tune for your machine if you have more capacity)
runs  <- 1  # 1 set for simplicity; use rather 16 or more
cores <- 1  # 1 set for simplicity; use rather 8 or more

Example 1 — BGNLM: recovering Kepler’s third law

Data: $n=939$ exoplanets; variables include semimajoraxis, period, hoststar_mass, etc.\ Target relationship: ${a \approx K_2 \left(P^2 M_h\right)^{1/3}}$.

We shall run a single chain GMJMCMC

# Load example
data <- FBMS::exoplanet

# Choose a small but expressive transform set for a quick demo
transforms <- c("sigmoid", "sin_deg", "exp_dbl", "p0", "troot", "p3")

# ---- fbms() call (simple GMJMCMC) ----
# Key parameters (explicit):
# - formula      : semimajoraxis ~ 1 + .       # response and all predictors
# - data         : data                        # dataset
# - beta_prior   : list(type = "g-prior")      # parameter prior    
# - model_prior  : list(r = 1/dim(data)[1])    # model prior   
# - method       : "gmjmcmc"                   # exploration strategy
# - transforms   : transforms                  # nonlinear feature dictionary
# - P            : population size per generation (search breadth)
result_single <- fbms(
  formula     = semimajoraxis ~ 1 + .,
  data        = data,
  beta_prior  = list(type = "g-prior", alpha = dim(data)[1]),
  model_prior = list(r = 1/dim(data)[1]),
  method      = "gmjmcmc",
  transforms  = transforms,
  P           = 10
)

# Summarize
printn(summary(result_single))

and a parallel GMJMCMC

# ---- fbms() call (parallel GMJMCMC) ----
# Key parameters (explicit):
# - formula      : semimajoraxis ~ 1 + .       # response and all predictors
# - data         : data                        # dataset
# - beta_prior   : list(type = "g-prior")      # parameter prior   
# - model_prior  : list(r = 1/dim(data)[1])    # model prior   
# - method       : "gmjmcmc"                   # exploration strategy
# - transforms   : transforms                  # nonlinear feature dictionary
# - runs, cores  : parallelization controls
# - P            : population size per generation (search breadth)
result_parallel <- fbms(
  formula     = semimajoraxis ~ 1 + .,
  data        = data,
  beta_prior  = list(type = "g-prior", alpha = dim(data)[1]),
  model_prior = list(r = 1/dim(data)[1]),
  method      = "gmjmcmc.parallel",
  transforms  = transforms,
  runs        = runs,     # by default the rmd has runs =  1; increase for convergence
  cores       = cores,    # by default the rmd has cores = 1; increase for convergence
  P           = 10
)

# Summarize
printn(summary(result_parallel))

Plot output

plot(result_parallel)

Convergence plots

diagn_plot(result_parallel)

Example 2 — Bayesian linear models

Reference: [@hubin2018mode]

Model

$$ \begin{aligned} Y_i \mid \mu_i, \phi &\sim \mathfrak{f}(y\mid \mu_i, \phi), \quad i=1,\dots,n, \ \mathsf{h}(\mu_i) &= \beta_0 + \sum_{j=1}^{p} \gamma_j \beta_j x_{ij}. \end{aligned} $$

We simulate data with a known sparse truth and run MJMCMC with an explicit g-prior.

library(mvtnorm)

n <- 100               # sample size
p <- 20                # number of covariates
k <- 5                 # size of true submodel

correct.model <- 1:k
beta.k <- (1:5)/5

beta <- rep(0, p)
beta[correct.model] <- beta.k

set.seed(123)
x <- rmvnorm(n, rep(0, p))
y <- x %*% beta + rnorm(n)

# Standardize
y <- scale(y)
X <- scale(x) / sqrt(n)

df <- as.data.frame(cbind(y, X))
colnames(df) <- c("Y", paste0("X", seq_len(ncol(df) - 1)))

printn(correct.model)
printn(beta.k)

Run MJMCMC with a g-prior (g = 100)

# ---- fbms() call (MJMCMC) ----
# Explicit prior choice:
#   beta_prior = list(type = "g-prior", alpha = 100)
# To switch to another prior, e.g. robust:
#   beta_prior = list(type = "robust")
result.lin <- fbms(
  formula    = Y ~ 1 + .,
  data       = df,
  method     = "mjmcmc",
  N          = 5000,                         # number of iterations
  beta_prior = list(type = "g-prior", alpha = 100)
)

Plot results

plot(result.lin)

Summarize with posterior effects

# 'effects' specifies quantiles for posterior modes of effects across models
printn(summary(result.lin, effects = c(0.5, 0.025, 0.975)))

Run parallel MJMCMC

# ---- fbms() call (parallel MJMCMC) ----
# Explicit prior choice:
#   beta_prior = list(type = "g-prior", alpha = 100)
# To switch to another prior, e.g. robust:
#   beta_prior = list(type = "robust")
#   method = mjmcmc.parallel
#   runs, cores  : parallelization controls
result.lin.par <- fbms(
  formula    = Y ~ 1 + .,
  data       = df,
  method     = "mjmcmc.parallel",
  N          = 5000,                         # number of iterations
  beta_prior = list(type = "g-prior", alpha = 100),
  runs = runs,
  cores = cores
)
printn(summary(result.lin.par, effects = c(0.5, 0.025, 0.975)))

Example 3 — Bayesian Fractional Polynomials (FP)

Reference: [@hubin2023fractional]

We augment the linear example to follow an FP truth and fit with GMJMCMC.

FP model class

$$ \begin{aligned} Y_i \mid \mu_i, \phi &\sim \mathfrak{f}(y|\mu_i,\phi),\ \mathsf{h}(\mu_i) &= \beta_0 + \sum_{j=1}^{p} \sum_{k \in K} \gamma_{jk}\, \beta_{jk}\, \rho_k(x_{ij}), \quad \text{with } K = \mathbf{F}_0 \cup \mathbf{F}_1 \cup \mathbf{F}_2, \end{aligned} $$

# Create FP-style response with known structure, covariates are from previous example
df$Y <- p05(df$X1) + df$X1 + pm05(df$X3) + p0pm05(df$X3) + df$X4 +
         pm1(df$X5) + p0(df$X6) + df$X8 + df$X10 + rnorm(nrow(df))

# Allow common FP transforms
transforms <- c(
  "p0", "p2", "p3", "p05", "pm05", "pm1", "pm2", "p0p0",
  "p0p05", "p0p1", "p0p2", "p0p3", "p0p05", "p0pm05", "p0pm1", "p0pm2"
)

# Generation probabilities — here only modifications and mutations
probs <- gen.probs.gmjmcmc(transforms)
probs$gen <- c(0, 1, 0, 1)

# Feature-generation parameters
params <- gen.params.gmjmcmc(ncol(df) - 1)
params$feat$D <- 1   # max depth 1 features

Run GMJMCMC (single-thread)

result <- fbms(
  formula    = Y ~ 1 + .,
  data       = df,
  method     = "gmjmcmc",
  transforms = transforms,
  beta_prior = list(type = "Jeffreys-BIC"),
  probs      = probs,
  params     = params,
  P          = 10
)

printn(summary(result))

Parallel GMJMCMC

result_parallel <- fbms(
  formula    = Y ~ 1 + .,
  data       = df,
  method     = "gmjmcmc.parallel",
  transforms = transforms,
  beta_prior = list(type = "Jeffreys-BIC"),
  probs      = probs,
  params     = params,
  P          = 10,
  runs       = runs,
  cores      = cores
)

printn(summary(result_parallel))

Example 4 — Mixed-effects FP with interactions

Dataset: $n=659$ kids; response $y$: standardized height; covariates: c.bf, c.age, m.ht, m.bmi, reg. Random intercept for dr.\ We specify a custom estimator that uses a mixed model (via lme4), and plug it into fbms() with family = "custom". We pass extra parameters of the estimator through mlpost_params = list(dr = dr,r = r)

# Custom approximate log marginal likelihood for mixed model using Laplace approximation
mixed.model.loglik.lme4 <- function (y, x, model, complex, mlpost_params) {
  if (sum(model) > 1) {
    x.model <- x[, model]
    data <- data.frame(y, x = x.model[, -1], dr = mlpost_params$dr)
    mm <- lmer(as.formula(paste0("y ~ 1 +",
                          paste0(names(data)[2:(ncol(data)-1)], collapse = "+"),
                          " + (1 | dr)")), data = data, REML = FALSE)
  } else {
    data <- data.frame(y, dr = mlpost_params$dr)
    mm <- lmer(y ~ 1 + (1 | dr), data = data, REML = FALSE)
  }
  # log marginal likelihood (Laplace approx) + log model prior
  mloglik <- as.numeric(logLik(mm)) - 0.5 * log(length(y)) * (ncol(data) - 2)
  if (length(mlpost_params$r) == 0) mlpost_params$r <- 1 / nrow(x)
  lp <- log_prior(mlpost_params, complex)
  list(crit = mloglik + lp, coefs = fixef(mm))
}
library(lme4)
data(Zambia, package = "cAIC4")

df <- as.data.frame(sapply(Zambia[1:5], scale))

transforms <- c("p0","p2","p3","p05","pm05","pm1","pm2",
                "p0p0","p0p05","p0p1","p0p2","p0p3",
                "p0p05","p0pm05","p0pm1","p0pm2")

probs <- gen.probs.gmjmcmc(transforms)
probs$gen <- c(1, 1, 0, 1) # include modifications and interactions

params <- gen.params.gmjmcmc(ncol(df) - 1)
params$feat$D <- 1
params$feat$pop.max <- 10

result2a <- fbms(
  formula      = z ~ 1 + .,
  data         = df,
  method       = "gmjmcmc.parallel",
  transforms   = transforms,
  probs        = probs,
  params       = params,
  P            = 10,
  N            = 100,
  runs         = runs,
  cores        = cores,
  family       = "custom",
  loglik.pi    = mixed.model.loglik.lme4,
  model_prior  = list(r = 1 / nrow(df)), # model_prior is passed to mlpost_params
  extra_params = list(dr = droplevels(Zambia$dr)) # extra_params are passed to mlpost_params
)

printn(summary(result2a, tol = 0.05, labels = names(df)[-1]))

Example 5 — Bayesian Logic Regression

Reference: [@hubin2020logic]

Model

$$ \mathsf{h}(\mu_i) = \beta_0 + \sum_{j=1}^{q} \gamma_j \beta_j L_{ji}, \quad L_{ji} \text{ are logic trees (e.g., } (x_{i1}\wedge x_{i2}) \vee x_{i3}^c ). $$

We generate Boolean covariates and a known logic signal, define a custom estimator with a logic prior, and fit via GMJMCMC.

n <- 2000
p <- 50

set.seed(1)
X2 <- as.data.frame(matrix(rbinom(n * p, size = 1, prob = runif(n * p, 0, 1)), n, p))
y2.Mean <- 1 + 7*(X2$V4*X2$V17*X2$V30*X2$V10) + 9*(X2$V7*X2$V20*X2$V12) + 
           3.5*(X2$V9*X2$V2) + 1.5*(X2$V37)

Y2 <- rnorm(n, mean = y2.Mean, sd = 1)
df <- data.frame(Y2, X2)

# Train/test split
df.training <- df[1:(n/2), ]
df.test     <- df[(n/2 + 1):n, ]
df.test$Mean <- y2.Mean[(n/2 + 1):n]

Custom estimator with logic regression priors

estimate.logic.lm <- function(y, x, model, complex, mlpost_params) {
  suppressWarnings({
    mod <- fastglm(as.matrix(x[, model]), y, family = gaussian())
  })
  mloglik <- -(mod$aic + (log(length(y)) - 2) * (mod$rank)) / 2
  wj <- complex$width
  lp <- sum(log(factorial(wj))) - sum(wj * log(4 * mlpost_params$p) - log(4))
  logpost <- mloglik + lp
  if (logpost == -Inf) logpost <- -10000
  list(crit = logpost, coefs = mod$coefficients)
}

Run GMJMCMC

set.seed(5001)

# Only "not" operator; "or" is implied by De Morgan via "and" + "not"
transforms <- c("not")
probs <- gen.probs.gmjmcmc(transforms)
probs$gen <- c(1, 1, 0, 1) # no projections

params <- gen.params.gmjmcmc(p)
params$feat$pop.max <- 50
params$feat$L <- 15

result <- fbms(
  formula     = Y2 ~ 1 + .,
  data        = df.training,
  method      = "gmjmcmc",
  transforms  = transforms,
  N           = 500,
  P           = 10,
  family      = "custom",
  loglik.pi   = estimate.logic.lm,
  probs       = probs,
  params      = params,
  model_prior = list(p = p)
)

printn(summary(result))

# Extract models
mpm   <- get.mpm.model(result, y = df.training$Y2, x = df.training[,-1],
                       family = "custom", loglik.pi = estimate.logic.lm, params = list(p = 50))
printn(mpm$coefs)

mpm2  <- get.mpm.model(result, y = df.training$Y2, x = df.training[,-1])
printn(mpm2$coefs)

mbest <- get.best.model(result)
printn(mbest$coefs)

Prediction

# Correct link is identity for Gaussian
pred       <- predict(result, x = df.test[,-1], link = function(x) x)
pred_mpm   <- predict(mpm,   x = df.test[,-1], link = function(x) x)
pred_best  <- predict(mbest, x = df.test[,-1], link = function(x) x)

# RMSEs
printn(sqrt(mean((pred$aggr$mean - df.test$Y2)^2)))
printn(sqrt(mean((pred_mpm     - df.test$Y2)^2)))
printn(sqrt(mean((pred_best    - df.test$Y2)^2)))
printn(sqrt(mean((df.test$Mean - df.test$Y2)^2)))

# Errors to the true mean (oracle)
printn(sqrt(mean((pred$aggr$mean - df.test$Mean)^2)))
printn(sqrt(mean((pred_best      - df.test$Mean)^2)))
printn(sqrt(mean((pred_mpm       - df.test$Mean)^2)))

# Quick diagnostic plot
plot(pred$aggr$mean, df.test$Y2,
     xlab = "Predicted (BMA)", ylab = "Observed")
points(pred$aggr$mean, df.test$Mean, col = 2)
points(pred_best,      df.test$Mean, col = 3)
points(pred_mpm,       df.test$Mean, col = 4)

Example 6 — Full BGNLM classification (Bernoulli): spam data

We fit a binomial BGNLM and compare BMA, best-model, and MPM predictions.\ Important: specify the correct link in predict() (here logistic).

library(kernlab)
data("spam")

df <- spam[, c(58, 1:57)]
n  <- nrow(df)
p  <- ncol(df) - 1

colnames(df) <- c("y", paste0("x", 1:p))
df$y <- as.numeric(df$y == "spam")

to3 <- function(x) x^3
transforms <- c("sigmoid","sin_deg","exp_dbl","p0","troot","to3")
probs <- gen.probs.gmjmcmc(transforms)
probs$gen <- c(1, 1, 1, 1)

params <- gen.params.gmjmcmc(p)
params$feat$check.col <- FALSE

set.seed(6001)
result <- fbms(
  formula    = y ~ 1 + .,
  data       = df,
  method     = "gmjmcmc",
  family     = "binomial",
  beta_prior = list(type = "Jeffreys-BIC"),
  transforms = transforms,
  probs      = probs,
  params     = params
)

printn(summary(result))

Prediction accuracy

# Logistic link
invlogit <- function(x) 1/(1 + exp(-x))

# Model averaging
pred <- predict(result, x = df[,-1], link = invlogit)
printn(mean(round(pred$aggr$mean) == df$y))

# Best model
bm <- get.best.model(result)
preds <- predict(bm, df[,-1], link = invlogit)
printn(mean(round(preds) == df$y))

# Median Probability Model
mpm <- get.mpm.model(result, family = "binomial", y = df$y, x = df[,-1])
preds_mpm <- predict(mpm, df[,-1], link = invlogit)
printn(mean(round(preds_mpm) == df$y))

References



Try the FBMS package in your browser

Any scripts or data that you put into this service are public.

FBMS documentation built on Sept. 13, 2025, 1:09 a.m.