independence-test"

knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>"
)
library(minerva)  # For Data
library(FORD)     # Our package
library(XICOR)    # For comparison
library(ggplot2)  # For visualization

Introduction

We propose a simple dependence measure $\nu(Y, \mathbf{X})$ (A New Measure Of Dependence: Integrated R2.) to assess how much a random variable $X$ explains a univariate response $Y$.

Then the simple irdc dependence measure is defined as:

$$ \nu_{n}^{\text{1-dim}}(Y, X) := 1 - \frac{1}{2}\sum_{j \atop r_j \neq 1, n}\sum_{i\neq j, j - 1, n} \frac{\mathbb{I}[r_j\in\mathcal{K}i]}{(r_j - 1)(n - r_j)}. $$ where $\mathbb{I}[r_j\in\mathcal{K}_i]$ is a 0-1 indicator function and $\mathcal{K}_i := [\min{r_i, r{i + 1}}, \max{r_{i}, r_{i + 1}}]$ when we ordered data with respect to $X$ and rank with respect to $Y$. In A New Measure Of Dependence: Integrated R2, we conjecture that under the same assumptions $$\sqrt{n}\left(\nu_{n}^{\text{1-dim}}(Y, X)-\frac{2}{n}\right)$$ converges in distribution to $N(0, \pi^2/3 - 3)$ as $n\rightarrow\infty$.

We compare this metric with the (A new coefficient of correlation, Chatterjee 2021. The $\xi$ measure is defined as following: $$ \xi_n(X, Y) := 1 - \frac{3 \sum_{i=1}^{n-1} |r_{i+1} - r_i|}{n^2 - 1}. $$ where we ordered data with respect to $X$ and rank with respect to $Y$.

(Chatterjee 2021 showed that given $X$ and $Y$ are independent and $Y$ is continuous. Then $$ \sqrt{n} \, \xi_n(X, Y) \xrightarrow{d} \mathcal{N}(0, 2/5) \quad \text{in distribution as } n \to \infty. $$

Pattern detection for Yeast genes

In this study, we use the revised and curated dataset, Spellman in R packageminerva, with 4381 genes to study the power of $\nu_{n}^{\text{1-dim}}(Y, X)$ in discovering genes with oscillating transcript levels, and compare its performance with the competing tests by $\xi_n$. We also explore the possible patterns in this dataset.

Load and Prepare Data

# Load yeast gene expression data
yeast_genes_data <- as.data.frame(Spellman)
gene_names <- colnames(yeast_genes_data)[-1]
time_points <- yeast_genes_data$time
n <- length(time_points)

Initialize Results Storage

xi_vals <- numeric(ncol(yeast_genes_data) - 1)
xi_pvals <- numeric(ncol(yeast_genes_data) - 1)
ird_vals <- numeric(ncol(yeast_genes_data) - 1)
ird_pvals <- numeric(ncol(yeast_genes_data) - 1)

Run Dependence Measures for Each Gene

for (i in 1:(ncol(yeast_genes_data) - 1)) {
  y <- as.numeric(yeast_genes_data[, i + 1])

  # XICOR
  xi_pvals[i] <- xicor(x = time_points , y = y, pvalue = T)$pval

  # IRDC
  ird <- irdc_simple(Y = y, X = time_points)
  ird_vals[i] <- ird
  ird_pvals[i] <-  1 - pnorm(ird, mean = 2/n , sd = sqrt((pi^2 / 3 - 3)/n))
}

Adjust p-values and Identify Significant Genes

xi_fdr <- p.adjust(xi_pvals, method = "BH")
ird_fdr <- p.adjust(ird_pvals, method = "BH")

sig_xi <- gene_names[xi_fdr < 0.05]
sig_ird <- gene_names[ird_fdr < 0.05]
common_genes <- intersect(sig_xi, sig_ird)

cat("All genes:", length(gene_names) , "\n")
cat("XICOR significant genes:", length(sig_xi), "\n")
cat("Simple IRDC significant genes:", length(sig_ird), "\n")
cat("Overlap:", length(common_genes), "\n")
cat("ONLY XICOR significant genes:", length(setdiff(sig_xi, sig_ird)), "\n")
cat("ONLY Simple IRDC significant genes:", length(setdiff(sig_ird, sig_xi)), "\n")

Genes Only Detected by IRDC

irdc_detected_only <- setdiff(sig_ird, sig_xi)
irdc_only_fdr <- ird_fdr[match(irdc_detected_only, gene_names)]
top6_idx <- order(irdc_only_fdr)[1:6]
smallest_p_irdc_do <- irdc_detected_only[top6_idx]

irdc_do_genes <- yeast_genes_data[, which(gene_names %in% smallest_p_irdc_do) + 1]
irdc_do_genes <- cbind(time_points, irdc_do_genes)

Plot Top Genes Only Detected by IRDC With Smallest Adjusted P_value IRDC

for (i in 1:6) {
  gene_to_plot <- colnames(irdc_do_genes)[i + 1]
  idx <- match(gene_to_plot, gene_names)

  p <- ggplot(irdc_do_genes, aes(x = time_points, y = .data[[gene_to_plot]])) +
    geom_point(size = 3) +
    geom_smooth(method = "loess",se = FALSE, linewidth = 1, color = "blue")+ 
    theme_bw() +
    labs(
      title = paste0("Only Detected by nu: xi adj.p-val = ", round(xi_fdr[idx], 4),
                     ", nu adj.p-val = ", round(ird_fdr[idx], 4)),
      x = "Time Points",
      y = gene_to_plot
    )
  print(p)
}

Genes with Largest Adjusted P_value of XICOR

xi_irdc_only_fdr <- xi_fdr[match(irdc_detected_only, gene_names)]
top6_diff <- order(-(xi_irdc_only_fdr))[1:6]
largest_p_dif_irdc_do <- irdc_detected_only[top6_diff]

irdc_do_large_diff_genes <- yeast_genes_data[, which(gene_names %in% largest_p_dif_irdc_do) + 1]
irdc_do_large_diff_genes <- cbind(time_points, irdc_do_large_diff_genes)

Plot Top Genes with With Largest Adjusted P_value XICOR

for (i in 1:6) {
  gene_to_plot <- colnames(irdc_do_large_diff_genes)[i + 1]
  idx <- match(gene_to_plot, gene_names)

  p <- ggplot(irdc_do_large_diff_genes, aes(x = time_points, y = .data[[gene_to_plot]])) +
    geom_point(size = 3) +
    geom_smooth(method = "loess", se = FALSE, linewidth = 1, color = "blue")+ 
    theme_bw() +
    labs(
      title = paste0("Only Detected by nu: xi adj.p-val = ", round(xi_fdr[idx], 4),
                     ", nu adj.p-val = ", round(ird_fdr[idx], 4)),
      x = "Time Points",
      y = gene_to_plot
    )
  print(p)
}


Try the FORD package in your browser

Any scripts or data that you put into this service are public.

FORD documentation built on June 8, 2025, 10:03 a.m.