print.FRESHD | R Documentation |
This function will print some information about the FRESHD object.
## S3 method for class 'FRESHD' print(x, ...)
x |
a FRESHD object |
... |
ignored |
A three-column data.frame with columns 'sparsity', 'Df' and 'lambda'. The 'Df' column is the number of nonzero coefficients and 'sparsity' is the percentage of zeros in the solution.
The data.frame above is silently returned
Adam Lund
##size of example set.seed(42) G <- 50; n <- c(65, 26, 13); p <- c(13, 5, 4) sigma <-0.1 nlambda =30 ##marginal design matrices (Kronecker components) x <- list() for(i in 1:length(n)){x[[i]] <- matrix(rnorm(n[i] * p[i],0,sigma), n[i], p[i])} ##common features and effects common_features <- rbinom(prod(p), 1, 0.1) common_effects <- rnorm(prod(p), 0, 0.1) * common_features ##group response and fit lambda <- exp(seq(0, -5, length.out = nlambda)) B <- array(NA, c(prod(p), nlambda, G)) y <- array(NA, c(n, G)) for(g in 1:G){ bg <- rnorm(prod(p), 0, 0.1) * (1 - common_features) + common_effects Bg <- array(bg, p) mu <- RH(x[[3]], RH(x[[2]], RH(x[[1]], Bg))) y[,,, g] <- array(rnorm(prod(n), 0, var(mu)), dim = n) + mu } ##fit model for range of lambda system.time(fit <- maximin(y, x, penalty = "lasso", alg = "tos")) Betahat <- fit$coef ##estimated common effects for specific lambda modelno <- 20; m <- min(Betahat[, modelno], common_effects) M <- max(Betahat[, modelno], common_effects) plot(common_effects, type = "h", ylim = c(m, M), col = "red") lines(Betahat[, modelno], type = "h")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.