rfactor | R Documentation |
Simulating standard uniform and ordinal response data from factor copula models.
r1factor(n, d1, d2, categ, theta, copF1) r2factor(n, d1, d2, categ, theta, delta, copF1, copF2)
n |
Sample size. |
d1 |
Number of standard uniform variables. |
d2 |
Number of ordinal variables. |
categ |
A vector of categories for the ordinal variables. |
theta |
Copula parameters for the 1st factor. |
delta |
Copula parameters for the 2nd factor. |
copF1 |
(d_1+d_2)-vector with the names of bivariate copulas that link the each of the oberved variabels with the 1st factor. Choices are “bvn” for BVN, “bvtν” with ν = \{1, …, 9\} degrees of freedom for t-copula, “frk” for Frank, “gum” for Gumbel, “rgum” for reflected Gumbel, “1rgum” for 1-reflected Gumbel, “2rgum” for 2-reflected Gumbel, “joe” for Joe, “rjoe” for reflected Joe, “1rjoe” for 1-reflected Joe, “2rjoe” for 2-reflected Joe, “BB1” for BB1, “rBB1” for reflected BB1, “BB7” for BB7, “rBB7” for reflected BB7, “BB8” for BB8, “rBB8” for reflected BB8, “BB10” for BB10, “rBB10” for reflected BB10. |
copF2 |
(d_1+d_2)-vector with the names of bivariate copulas that link the each of the oberved variabels with the 2nd factor. Choices are “bvn” for BVN, “bvt[ν]” with ν = \{1, …, 9\} degrees of freedom for t-copula, “frk” for Frank, “gum” for Gumbel, “rgum” for reflected Gumbel, “1rgum” for 1-reflected Gumbel, “2rgum” for 2-reflected Gumbel, “joe” for Joe, “rjoe” for reflected Joe, “1rjoe” for 1-reflected Joe, “2rjoe” for 2-reflected Joe, “BB1” for BB1, “rBB1” for reflected BB1, “BB7” for BB7, “rBB7” for reflected BB7, “BB8” for BB8, “rBB8” for reflected BB8, “BB10” for BB10, “rBB10” for reflected BB10. |
Data matrix of dimension n\times d, where n is the sample size, and d=d_1+d_2 is the total number of variables.
Sayed H. Kadhem s.kadhem@uea.ac.uk
Aristidis K. Nikoloulopoulos a.nikoloulopoulos@uea.ac.uk
Kadhem, S.H. and Nikoloulopoulos, A.K. (2021) Factor copula models for mixed data. British Journal of Mathematical and Statistical Psychology, 74, 365–403. doi: 10.1111/bmsp.12231.
# --------------------------------------------------- # --------------------------------------------------- # One-factor copula model # --------------------------------------------------- # --------------------------------------------------- #Sample size ---------------------------------------- n = 100 #Continuous Variables ------------------------------ d1 = 5 #Ordinal Variables --------------------------------- d2 = 3 #Categories for ordinal ---------------------------- categ = c(3,4,5) #Copula parameters --------------------------------- theta = rep(2, d1+d2) #Copula names -------------------------------------- copnamesF1 = rep("gum", d1+d2) #----------------- Simulating data ------------------ datF1 = r1factor(n, d1=d1, d2=d2, categ, theta, copnamesF1) #------------ Plotting continuous data ------------- pairs(qnorm(datF1[, 1:d1])) # --------------------------------------------------- # --------------------------------------------------- # Two-factor copula model # --------------------------------------------------- # --------------------------------------------------- #Sample size ---------------------------------------- n = 100 #Continuous Variables ------------------------------ d1 = 5 #Ordinal Variables --------------------------------- d2 = 3 #Categories for ordinal ---------------------------- categ = c(3,4,5) #Copula parameters --------------------------------- theta = rep(2.5, d1+d2) delta = rep(1.5, d1+d2) #Copula names -------------------------------------- copnamesF1 = rep("gum", d1+d2) copnamesF2 = rep("gum", d1+d2) #----------------- Simulating data ------------------ datF2 = r2factor(n, d1=d1, d2=d2, categ, theta, delta, copnamesF1, copnamesF2) #----------------- Plotting data ------------------ pairs(qnorm(datF2[,1:d1]))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.