Nothing
#' Simulated datasets for demonstration
#'
#' The dataset was generated based on the proposed model \eqn{h(t; \boldsymbol{Z}_i, {X}_i(\cdot))=h_{0}(t-t_{i,j-1}) \exp \left(\eta_{ij}\right)},
#' where \eqn{h_0(\cdot)} is the baseline hazard function generated from a Weibull distribution. \eqn{\eta_{ij} = \bm{\alpha}^{\top}\boldsymbol{Z}_i +\int_{t_{i, j-1}}^{t}{X}_{i}(s)\beta(s)ds + v_{ij}}.
#' \eqn{\bm{\alpha}} is the fixed effect parameter associated with the time-invariant covariates \eqn{\boldsymbol{Z}_i},
#' and \eqn{\beta(t)} is a time-varying coefficient that captures the effect of functional predictor \eqn{X_{i}(t)} on the hazard rate of recurrent events.
#' The simulated dataset is organized into two data frames:
#' a survival data frame (\code{sdat}) and a functional data frame (\code{fdat}).
#' The variables in each data frame are listed below:
#'
#'
#' @usage data(simDat)
#' @source Simulated data
#' @docType data
#' @name simDat
#' @aliases sdat fdat simData
#' @format A list with two data frame:
#' \describe{
#' \item{sdat}{Survival data; a data frame with xxx rows and xxx variables:}
#' \describe{
#' \item{id}{Subjects identification}
#' \item{event}{A sequence of the number of events per subject}
#' \item{t_start}{Event starting time}
#' \item{t_end}{Event end time}
#' \item{censoring_time}{Event censoring time}
#' \item{status}{Event status: \code{status=1} if event is observed and \code{status=0} if event is censored}
#' \item{z1}{A univariate scalar covariates. Can be extended to multiple scalar covariates}
#' }
#' \item{fdat}{Functional data; a data frame with xxx rows and xxx variables:}
#' \describe{
#' \item{id}{Subjects identification}
#' \item{time}{Time points for each longitudinal measurement}
#' \item{x}{Longitudinal measurements at distinct time points}
#' }
#' }
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.