tests/testthat/_snaps/ImputationTests.md

Function returns correct values

Code
  set.seed(123456)
  ImputationTests(trueData = testMatrix1, imputedData = testMatrix1Res,
    imputedMask = testMatrix1Mask, cutsNumber = 100, K = 10, trapezoidal = TRUE)
Output
  $trueValues
              [,1]         [,2]        [,3]         [,4]
   [1,]  0.1199240  0.188146026  0.31481645  0.454346750
   [2,] -0.4088952 -0.009244923  0.44777067  1.001830760
   [3,]  0.4277991  0.603188626  1.92344212  2.062777662
   [4,] -2.2328662 -2.042898771  0.35867035  0.907465245
   [5,] -2.5630808 -2.064273777 -1.23140885 -0.927024725
   [6,]  0.2323925  0.341050237  0.89701427  1.084108858
   [7,] -0.9907339 -0.617642400 -0.06840412  0.117407837
   [8,] -0.4229014  0.007461673  0.41849777  0.937398067
   [9,] -1.3006321 -1.275517766 -0.46704551 -0.436057542
  [10,] -3.6169809 -3.278239026 -1.14842928 -0.917869269
  [11,] -0.5573558 -0.515324252 -0.42162779 -0.303922994
  [12,] -1.6530331 -1.113884835 -0.22295531 -0.142508395
  [13,] -1.7779261 -1.698957584  0.58819769  0.609471724
  [14,] -1.6492244 -1.310178700 -0.08413849  0.008898696
  [15,] -0.4535884 -0.375611086  1.18356358  1.753746539
  [16,] -0.8892359 -0.816145242 -0.47619296 -0.029626635
  [17,]  1.5656538  2.115238384  3.00592957  3.082389607
  [18,]  0.9068369  1.160665144  1.54206699  1.736698607
  [19,] -0.8969491 -0.608124123 -0.30055712  0.287914788
  [20,] -1.6964713 -1.350383708 -0.07207102  0.289067511

  $mask
         [,1]  [,2]  [,3]  [,4]
   [1,] FALSE FALSE FALSE FALSE
   [2,] FALSE  TRUE FALSE FALSE
   [3,] FALSE FALSE FALSE FALSE
   [4,] FALSE FALSE FALSE FALSE
   [5,] FALSE FALSE FALSE FALSE
   [6,] FALSE  TRUE  TRUE FALSE
   [7,] FALSE FALSE FALSE  TRUE
   [8,]  TRUE FALSE FALSE FALSE
   [9,] FALSE FALSE FALSE  TRUE
  [10,] FALSE FALSE FALSE FALSE
  [11,] FALSE  TRUE FALSE FALSE
  [12,] FALSE FALSE FALSE FALSE
  [13,]  TRUE FALSE FALSE FALSE
  [14,]  TRUE FALSE  TRUE FALSE
  [15,] FALSE FALSE  TRUE FALSE
  [16,] FALSE  TRUE FALSE FALSE
  [17,]  TRUE FALSE FALSE FALSE
  [18,] FALSE FALSE FALSE FALSE
  [19,] FALSE FALSE  TRUE  TRUE
  [20,] FALSE FALSE FALSE  TRUE

  $nonFNNumbers
    V1 mean 
     0    0

  $errorMatrix
                X1           X2        X3         X4        mean
  MAE   0.15816363   0.18044286 0.3764461 0.10809568  0.20578707
  WMAE  0.25232132   9.12089408 0.7923513 0.49790500  2.66586793
  MSE   0.04968434   0.04419471 0.1953087 0.01864308  0.07695769
  WMSE  0.18867129 319.26814069 0.8957060 0.40012277 80.18816020
  NRMSE 0.09791167   0.09052128 0.2146912 0.06818963  0.11782844

  $statisticalMeasures
                               X1          X2         X3           X4        mean
  TrueMean           -0.571099525 -0.24991605 0.42397056  0.064583148 -0.08311547
  ImpMean            -0.542822592 -0.08596016 0.32411334 -0.003713996 -0.07709585
  AbsDiffTrueImpMean  0.028276932  0.16395589 0.09985722  0.068297145  0.09009680
  GenMean            -0.892863415 -0.63303381 0.30935695  0.578825655 -0.15942865
  GenImpMean         -0.887208030 -0.60024263 0.28938551  0.565166226 -0.15822473
  AbsDiffGenImpMean   0.005655385  0.03279118 0.01997144  0.013659429  0.01801936
  TrueSD              1.549888285  0.51582321 0.72660560  0.343366567  0.78392091
  ImpSD               1.651290877  0.56980539 0.29546576  0.290234559  0.70169914
  AbsDiffTrueImpSD    0.101402593  0.05398218 0.43113984  0.053132008  0.15991415
  GenSD               1.232048554  1.22736828 1.02518086  1.020631251  1.12630723
  GenImpSD            1.254258014  1.24364860 0.98907990  1.025644293  1.12815770
  AbsDiffGenImpSD     0.022209460  0.01628032 0.03610096  0.005013043  0.01990095

  $statisticalTests
                          V1      mean
  true+avs-anti    0.4319143 0.4319143
  true+ms-anti     0.4494832 0.4494832
  true+res-anti    0.4020562 0.4020562
  imputed+avs-anti 0.3443240 0.3443240
  imputed+ms-anti  0.4212245 0.4212245
  imputed+res-anti 0.3710733 0.3710733
  parts+avs-anti   0.8978057 0.8978057
  parts+ms-anti    0.8711881 0.8711881
  parts+res-anti   0.9074074 0.9074074

  $fuzzyMeasures
                     V1       mean
  Euclidean  0.01597974 0.01597974
  AHD        0.20373806 0.20373806
  HSD        0.14043065 0.14043065
  Bertoluzza 0.07935232 0.07935232
  DiffVal    0.06332650 0.06332650
  DiffAmb    0.07076335 0.07076335
  DiffEV     0.05773562 0.05773562
  DiffWidth  0.06330741 0.06330741

  attr(,"class")
  [1] "impTest"
Code
  set.seed(123456)
  ImputationTests(trueData = testMatrix2, imputedData = testMatrix2Res,
    imputedMask = testMatrix2Mask, cutsNumber = 100, K = 10, trapezoidal = FALSE)
Output
  $trueValues
              [,1]         [,2]        [,3]
   [1,]  0.1199240  0.188146026  0.31481645
   [2,] -0.4088952 -0.009244923  0.44777067
   [3,]  0.4277991  0.603188626  1.92344212
   [4,] -2.2328662 -2.042898771  0.35867035
   [5,] -2.5630808 -2.064273777 -1.23140885
   [6,]  0.2323925  0.341050237  0.89701427
   [7,] -0.9907339 -0.617642400 -0.06840412
   [8,] -0.4229014  0.007461673  0.41849777
   [9,] -1.3006321 -1.275517766 -0.46704551
  [10,] -3.6169809 -3.278239026 -1.14842928
  [11,] -0.5573558 -0.515324252 -0.42162779
  [12,] -1.6530331 -1.113884835 -0.22295531
  [13,] -1.7779261 -1.698957584  0.58819769
  [14,] -1.6492244 -1.310178700 -0.08413849
  [15,] -0.4535884 -0.375611086  1.18356358
  [16,] -0.8892359 -0.816145242 -0.47619296
  [17,]  1.5656538  2.115238384  3.00592957
  [18,]  0.9068369  1.160665144  1.54206699
  [19,] -0.8969491 -0.608124123 -0.30055712
  [20,] -1.6964713 -1.350383708 -0.07207102

  $mask
         [,1]  [,2]  [,3]
   [1,] FALSE FALSE FALSE
   [2,] FALSE  TRUE FALSE
   [3,] FALSE FALSE FALSE
   [4,] FALSE FALSE FALSE
   [5,] FALSE FALSE FALSE
   [6,] FALSE  TRUE  TRUE
   [7,] FALSE FALSE FALSE
   [8,]  TRUE FALSE FALSE
   [9,] FALSE FALSE FALSE
  [10,] FALSE FALSE FALSE
  [11,] FALSE  TRUE FALSE
  [12,] FALSE FALSE FALSE
  [13,]  TRUE FALSE FALSE
  [14,]  TRUE FALSE  TRUE
  [15,] FALSE FALSE  TRUE
  [16,] FALSE  TRUE FALSE
  [17,]  TRUE FALSE FALSE
  [18,] FALSE FALSE FALSE
  [19,] FALSE FALSE  TRUE
  [20,] FALSE FALSE FALSE

  $nonFNNumbers
    V1 mean 
     0    0

  $errorMatrix
                X1           X2        X3        mean
  MAE   0.15816363   0.18044286 0.3764461   0.2383509
  WMAE  0.25232132   9.12089408 0.7923513   3.3885222
  MSE   0.04968434   0.04419471 0.1953087   0.0963959
  WMSE  0.18867129 319.26814069 0.8957060 106.7841727
  NRMSE 0.09791167   0.09052128 0.2146912   0.1343747

  $statisticalMeasures
                               X1          X2         X3        mean
  TrueMean           -0.571099525 -0.24991605 0.42397056 -0.13234834
  ImpMean            -0.542822592 -0.08596016 0.32411334 -0.10155647
  AbsDiffTrueImpMean  0.028276932  0.16395589 0.09985722  0.09736335
  GenMean            -0.892863415 -0.63303381 0.30935695 -0.40551342
  GenImpMean         -0.887208030 -0.60024263 0.28938551 -0.39935505
  AbsDiffGenImpMean   0.005655385  0.03279118 0.01997144  0.01947267
  TrueSD              1.549888285  0.51582321 0.72660560  0.93077236
  ImpSD               1.651290877  0.56980539 0.29546576  0.83885401
  AbsDiffTrueImpSD    0.101402593  0.05398218 0.43113984  0.19550820
  GenSD               1.232048554  1.22736828 1.02518086  1.16153256
  GenImpSD            1.254258014  1.24364860 0.98907990  1.16232883
  AbsDiffGenImpSD     0.022209460  0.01628032 0.03610096  0.02486358

  $statisticalTests
                          V1      mean
  true+avs-anti    0.1678213 0.1678213
  true+ms-anti     0.3094203 0.3094203
  true+res-anti    0.3046429 0.3046429
  imputed+avs-anti 0.1678213 0.1678213
  imputed+ms-anti  0.2548216 0.2548216
  imputed+res-anti 0.2427320 0.2427320
  parts+avs-anti   0.9944576 0.9944576
  parts+ms-anti    0.9913046 0.9913046
  parts+res-anti   0.9944576 0.9944576

  $fuzzyMeasures
                     V1       mean
  Euclidean  0.02153806 0.02153806
  AHD        0.21252430 0.21252430
  HSD        0.15907851 0.15907851
  Bertoluzza 0.10464542 0.10464542
  DiffVal    0.07428797 0.07428797
  DiffAmb    0.03563052 0.03563052
  DiffEV     0.07534339 0.07534339
  DiffWidth  0.05344578 0.05344578

  attr(,"class")
  [1] "impTest"
Code
  set.seed(123456)
  ImputationTests(trueData = testDF1, imputedData = testDF1Res, imputedMask = testDF1Mask,
    cutsNumber = 100, K = 10, trapezoidal = TRUE)
Output
  $trueValues
                V1           V2          V3           V4
   [1,]  0.1199240  0.188146026  0.31481645  0.454346750
   [2,] -0.4088952 -0.009244923  0.44777067  1.001830760
   [3,]  0.4277991  0.603188626  1.92344212  2.062777662
   [4,] -2.2328662 -2.042898771  0.35867035  0.907465245
   [5,] -2.5630808 -2.064273777 -1.23140885 -0.927024725
   [6,]  0.2323925  0.341050237  0.89701427  1.084108858
   [7,] -0.9907339 -0.617642400 -0.06840412  0.117407837
   [8,] -0.4229014  0.007461673  0.41849777  0.937398067
   [9,] -1.3006321 -1.275517766 -0.46704551 -0.436057542
  [10,] -3.6169809 -3.278239026 -1.14842928 -0.917869269
  [11,] -0.5573558 -0.515324252 -0.42162779 -0.303922994
  [12,] -1.6530331 -1.113884835 -0.22295531 -0.142508395
  [13,] -1.7779261 -1.698957584  0.58819769  0.609471724
  [14,] -1.6492244 -1.310178700 -0.08413849  0.008898696
  [15,] -0.4535884 -0.375611086  1.18356358  1.753746539
  [16,] -0.8892359 -0.816145242 -0.47619296 -0.029626635
  [17,]  1.5656538  2.115238384  3.00592957  3.082389607
  [18,]  0.9068369  1.160665144  1.54206699  1.736698607
  [19,] -0.8969491 -0.608124123 -0.30055712  0.287914788
  [20,] -1.6964713 -1.350383708 -0.07207102  0.289067511

  $mask
           V1    V2    V3    V4
   [1,] FALSE FALSE FALSE FALSE
   [2,] FALSE  TRUE FALSE FALSE
   [3,] FALSE FALSE FALSE FALSE
   [4,] FALSE FALSE FALSE FALSE
   [5,] FALSE FALSE FALSE FALSE
   [6,] FALSE  TRUE  TRUE FALSE
   [7,] FALSE FALSE FALSE  TRUE
   [8,]  TRUE FALSE FALSE FALSE
   [9,] FALSE FALSE FALSE  TRUE
  [10,] FALSE FALSE FALSE FALSE
  [11,] FALSE  TRUE FALSE FALSE
  [12,] FALSE FALSE FALSE FALSE
  [13,]  TRUE FALSE FALSE FALSE
  [14,]  TRUE FALSE  TRUE FALSE
  [15,] FALSE FALSE  TRUE FALSE
  [16,] FALSE  TRUE FALSE FALSE
  [17,]  TRUE FALSE FALSE FALSE
  [18,] FALSE FALSE FALSE FALSE
  [19,] FALSE FALSE  TRUE  TRUE
  [20,] FALSE FALSE FALSE  TRUE

  $nonFNNumbers
    V1 mean 
     0    0

  $errorMatrix
                V1           V2        V3         V4        mean
  MAE   0.15816363   0.18044286 0.3764461 0.10809568  0.20578707
  WMAE  0.25232132   9.12089408 0.7923513 0.49790500  2.66586793
  MSE   0.04968434   0.04419471 0.1953087 0.01864308  0.07695769
  WMSE  0.18867129 319.26814069 0.8957060 0.40012277 80.18816020
  NRMSE 0.09791167   0.09052128 0.2146912 0.06818963  0.11782844

  $statisticalMeasures
                               V1          V2         V3           V4        mean
  TrueMean           -0.571099525 -0.24991605 0.42397056  0.064583148 -0.08311547
  ImpMean            -0.542822592 -0.08596016 0.32411334 -0.003713996 -0.07709585
  AbsDiffTrueImpMean  0.028276932  0.16395589 0.09985722  0.068297145  0.09009680
  GenMean            -0.892863415 -0.63303381 0.30935695  0.578825655 -0.15942865
  GenImpMean         -0.887208030 -0.60024263 0.28938551  0.565166226 -0.15822473
  AbsDiffGenImpMean   0.005655385  0.03279118 0.01997144  0.013659429  0.01801936
  TrueSD              1.549888285  0.51582321 0.72660560  0.343366567  0.78392091
  ImpSD               1.651290877  0.56980539 0.29546576  0.290234559  0.70169914
  AbsDiffTrueImpSD    0.101402593  0.05398218 0.43113984  0.053132008  0.15991415
  GenSD               1.232048554  1.22736828 1.02518086  1.020631251  1.12630723
  GenImpSD            1.254258014  1.24364860 0.98907990  1.025644293  1.12815770
  AbsDiffGenImpSD     0.022209460  0.01628032 0.03610096  0.005013043  0.01990095

  $statisticalTests
                          V1      mean
  true+avs-anti    0.4319143 0.4319143
  true+ms-anti     0.4494832 0.4494832
  true+res-anti    0.4020562 0.4020562
  imputed+avs-anti 0.3443240 0.3443240
  imputed+ms-anti  0.4212245 0.4212245
  imputed+res-anti 0.3710733 0.3710733
  parts+avs-anti   0.8978057 0.8978057
  parts+ms-anti    0.8711881 0.8711881
  parts+res-anti   0.9074074 0.9074074

  $fuzzyMeasures
                     V1       mean
  Euclidean  0.01597974 0.01597974
  AHD        0.20373806 0.20373806
  HSD        0.14043065 0.14043065
  Bertoluzza 0.07935232 0.07935232
  DiffVal    0.06332650 0.06332650
  DiffAmb    0.07076335 0.07076335
  DiffEV     0.05773562 0.05773562
  DiffWidth  0.06330741 0.06330741

  attr(,"class")
  [1] "impTest"
Code
  set.seed(123456)
  ImputationTests(trueData = testDF2, imputedData = testDF2Res, imputedMask = testDF2Mask,
    cutsNumber = 100, K = 10, trapezoidal = FALSE)
Output
  $trueValues
                V1           V2          V3
   [1,]  0.1199240  0.188146026  0.31481645
   [2,] -0.4088952 -0.009244923  0.44777067
   [3,]  0.4277991  0.603188626  1.92344212
   [4,] -2.2328662 -2.042898771  0.35867035
   [5,] -2.5630808 -2.064273777 -1.23140885
   [6,]  0.2323925  0.341050237  0.89701427
   [7,] -0.9907339 -0.617642400 -0.06840412
   [8,] -0.4229014  0.007461673  0.41849777
   [9,] -1.3006321 -1.275517766 -0.46704551
  [10,] -3.6169809 -3.278239026 -1.14842928
  [11,] -0.5573558 -0.515324252 -0.42162779
  [12,] -1.6530331 -1.113884835 -0.22295531
  [13,] -1.7779261 -1.698957584  0.58819769
  [14,] -1.6492244 -1.310178700 -0.08413849
  [15,] -0.4535884 -0.375611086  1.18356358
  [16,] -0.8892359 -0.816145242 -0.47619296
  [17,]  1.5656538  2.115238384  3.00592957
  [18,]  0.9068369  1.160665144  1.54206699
  [19,] -0.8969491 -0.608124123 -0.30055712
  [20,] -1.6964713 -1.350383708 -0.07207102

  $mask
           V1    V2    V3
   [1,] FALSE FALSE FALSE
   [2,] FALSE  TRUE FALSE
   [3,] FALSE FALSE FALSE
   [4,] FALSE FALSE FALSE
   [5,] FALSE FALSE FALSE
   [6,] FALSE  TRUE  TRUE
   [7,] FALSE FALSE FALSE
   [8,]  TRUE FALSE FALSE
   [9,] FALSE FALSE FALSE
  [10,] FALSE FALSE FALSE
  [11,] FALSE  TRUE FALSE
  [12,] FALSE FALSE FALSE
  [13,]  TRUE FALSE FALSE
  [14,]  TRUE FALSE  TRUE
  [15,] FALSE FALSE  TRUE
  [16,] FALSE  TRUE FALSE
  [17,]  TRUE FALSE FALSE
  [18,] FALSE FALSE FALSE
  [19,] FALSE FALSE  TRUE
  [20,] FALSE FALSE FALSE

  $nonFNNumbers
    V1 mean 
     0    0

  $errorMatrix
                V1           V2        V3        mean
  MAE   0.15816363   0.18044286 0.3764461   0.2383509
  WMAE  0.25232132   9.12089408 0.7923513   3.3885222
  MSE   0.04968434   0.04419471 0.1953087   0.0963959
  WMSE  0.18867129 319.26814069 0.8957060 106.7841727
  NRMSE 0.09791167   0.09052128 0.2146912   0.1343747

  $statisticalMeasures
                               V1          V2         V3        mean
  TrueMean           -0.571099525 -0.24991605 0.42397056 -0.13234834
  ImpMean            -0.542822592 -0.08596016 0.32411334 -0.10155647
  AbsDiffTrueImpMean  0.028276932  0.16395589 0.09985722  0.09736335
  GenMean            -0.892863415 -0.63303381 0.30935695 -0.40551342
  GenImpMean         -0.887208030 -0.60024263 0.28938551 -0.39935505
  AbsDiffGenImpMean   0.005655385  0.03279118 0.01997144  0.01947267
  TrueSD              1.549888285  0.51582321 0.72660560  0.93077236
  ImpSD               1.651290877  0.56980539 0.29546576  0.83885401
  AbsDiffTrueImpSD    0.101402593  0.05398218 0.43113984  0.19550820
  GenSD               1.232048554  1.22736828 1.02518086  1.16153256
  GenImpSD            1.254258014  1.24364860 0.98907990  1.16232883
  AbsDiffGenImpSD     0.022209460  0.01628032 0.03610096  0.02486358

  $statisticalTests
                          V1      mean
  true+avs-anti    0.1678213 0.1678213
  true+ms-anti     0.3094203 0.3094203
  true+res-anti    0.3046429 0.3046429
  imputed+avs-anti 0.1678213 0.1678213
  imputed+ms-anti  0.2548216 0.2548216
  imputed+res-anti 0.2427320 0.2427320
  parts+avs-anti   0.9944576 0.9944576
  parts+ms-anti    0.9913046 0.9913046
  parts+res-anti   0.9944576 0.9944576

  $fuzzyMeasures
                     V1       mean
  Euclidean  0.02153806 0.02153806
  AHD        0.21252430 0.21252430
  HSD        0.15907851 0.15907851
  Bertoluzza 0.10464542 0.10464542
  DiffVal    0.07428797 0.07428797
  DiffAmb    0.03563052 0.03563052
  DiffEV     0.07534339 0.07534339
  DiffWidth  0.05344578 0.05344578

  attr(,"class")
  [1] "impTest"


Try the FuzzyImputationTest package in your browser

Any scripts or data that you put into this service are public.

FuzzyImputationTest documentation built on April 3, 2025, 9:23 p.m.