View source: R/CalculateFuzziness.R
CalculateFuzziness | R Documentation |
CalculateFuzziness
returns the fuzziness of the triangular or trapezoidal fuzzy number (see, e.g., (Ban et al., 2015),
(Grzegorzewski et al., 2020)).
CalculateFuzziness(fuzzyNumber, increases = FALSE)
fuzzyNumber |
Input data consist of triangular or trapezoidal fuzzy numbers. |
increases |
If |
The input data should consist of triangular or trapezoidal fuzzy numbers, given as a single vector or a whole matrix. In each row, there should be a single fuzzy number in one of the forms:
left end of the support, left end of the core, right end of the core, right end of the support, or
left increment of the support, left end of the core, right end of the core, right increment of the support.
In this second case, the parameter increases=TRUE
has to be used.
Then for each fuzzy number, its characteristics, known as the fuzziness of fuzzy number, is calculated. For the respective formulas, see, e.g., (Ban et al., 2015), (Grzegorzewski et al., 2020)).
This function returns vector of double values. Each output value is equal to the fuzziness of the respective fuzzy number.
Ban, A.I., Coroianu, L., Grzegorzewski, P. (2015) Fuzy Numbers: Approximations, Ranking and Applications Institute of Computer Sciences, Polish Academy of Sciences
Grzegorzewski, P., Hryniewicz, O., Romaniuk, M. (2020) Flexible resampling for fuzzy data based on the canonical representation International Journal of Computational Intelligence Systems, 13 (1), pp. 1650-1662
CalculateValue
for calculation of the value,
CalculateAmbiguityL
for calculation of the left-hand ambiguity,
CalculateAmbiguityR
for calculation of the right-hand ambiguity,
CalculateAmbiguity
for calculation of the ambiguity,
CalculateExpValue
for calculation of the expected value,
CalculateWidth
for calculation of the width
Other characteristics of fuzzy numbers functions:
CalculateAmbiguity()
,
CalculateAmbiguityL()
,
CalculateAmbiguityR()
,
CalculateExpValue()
,
CalculateValue()
,
CalculateWidth()
# prepare some fuzzy numbers (first type of the initial sample)
fuzzyValues <- matrix(c(0.25,0.5,1,1.25,0.75,1,1.5,2.2,-1,0,0,2),
ncol = 4,byrow = TRUE)
# calculate the fuzziness of the first fuzzy number
CalculateFuzziness(fuzzyValues[1,])
# calculate the fuzziness for the whole matrix
CalculateFuzziness(fuzzyValues)
# prepare some fuzzy numbers (second type of the initial sample)
fuzzyValuesInc <- matrix(c(0.25,0.5,1,0.25,0.25,1,1.5,0.7,1,0,0,2),
ncol = 4,byrow = TRUE)
# calculate the fuzziness of the first fuzzy number
CalculateFuzziness(fuzzyValuesInc[1,], increases = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.