cal.F1Score | R Documentation |
Calculate F1 score for classification, the inputs must be characters, and each of these elements must be either 'FALSE' or 'TRUE'.
cal.F1Score(predictions, truelabels)
predictions |
predictions |
truelabels |
true labels |
F1 score
set.seed(2022)
p_size = 30
sample_size=300
R1 = 3
R2 = 2
ratio = 0.5 #The ratio of zeroes in coefficients
# Set the true coefficients
zeroNum = round(ratio*p_size)
ind = sample(1:p_size,zeroNum)
beta_true = runif(p_size,0,R2)
beta_true[ind] = 0
X = R1*matrix(rnorm(sample_size * p_size), ncol = p_size)
y=X%*%beta_true + rnorm(sample_size,mean=0,sd=2)
# Estimation
fit = GAGAs(X,y,alpha = 3,family="gaussian")
Eb = fit$beta
cat("\n F1 score:", cal.F1Score(as.character(Eb!=0),as.character(beta_true!=0)))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.