inst/doc/GD.R

## ----setup, include=FALSE-----------------------------------------------------
knitr::opts_chunk$set(
  echo = TRUE,
  comment = "##"
)

## ----eval = FALSE-------------------------------------------------------------
# ## install and library the pacakge
# install.packages("GD")
# library("GD")
# 
# ## Example 1
# ## NDVI: ndvi_40
# ## set optional parameters of optimal discretization
# ## optional methods: equal, natural, quantile, geometric, sd and manual
# discmethod <- c("equal","natural","quantile")
# discitv <- c(4:6)
# ## "gdm" function
# ## In this case, Climatezone and Mining are categorical variables,
# ## and Tempchange and GDP are continuous variables.
# ndvigdm <- gdm(NDVIchange ~ Climatezone + Mining + Tempchange + GDP,
#                continuous_variable = c("Tempchange", "GDP"),
#                data = ndvi_40,
#                discmethod = discmethod, discitv = discitv) # ~3s
# ndvigdm
# plot(ndvigdm)
# 
# ## Example 2
# ## H1N1: h1n1_100
# ## set optional parameters of optimal discretization
# discmethod <- c("equal","natural","quantile","geometric","sd")
# discitv <- c(3:7)
# continuous_variable <- colnames(h1n1_100)[-c(1,11)]
# ## "gdm" function
# h1n1gdm <- gdm(H1N1 ~ .,
#                continuous_variable = continuous_variable,
#                data = h1n1_100,
#                discmethod = discmethod, discitv = discitv)
# h1n1gdm
# plot(h1n1gdm)

## -----------------------------------------------------------------------------
library("GD")
data("ndvi_40")
head(ndvi_40)[1:3,]

## ----eval = FALSE-------------------------------------------------------------
# ## discretization methods: equal, natural, quantile (default), geometric, sd and manual
# ds1 <- disc(ndvi_40$Tempchange, 4)
# ds1
# plot(ds1)

## ----eval = FALSE-------------------------------------------------------------
# ## set optional discretization methods and numbers of intervals
# discmethod <- c("equal","natural","quantile","geometric","sd")
# discitv <- c(4:7)
# ## optimal discretization
# odc1 <- optidisc(NDVIchange ~ Tempchange, data = ndvi_40,
#                  discmethod, discitv)
# odc1
# plot(odc1)

## ----eval = FALSE-------------------------------------------------------------
# ## a categorical explanatory variable
# g1 <- gd(NDVIchange ~ Climatezone, data = ndvi_40)
# g1
# 
# ## multiple categorical explanatory variables
# g2 <- gd(NDVIchange ~ ., data = ndvi_40[,1:3])
# g2
# plot(g2)
# 
# ## multiple variables including continuous variables
# discmethod <- c("equal","natural","quantile","geometric","sd")
# discitv <- c(3:7)
# data.ndvi <- ndvi_40
# 
# data.continuous <- data.ndvi[, c(1, 4:7)]
# odc1 <- optidisc(NDVIchange ~ ., data = data.continuous, discmethod, discitv) # ~14s
# data.continuous <- do.call(cbind, lapply(1:4, function(x)
#   data.frame(cut(data.continuous[, -1][, x], unique(odc1[[x]]$itv), include.lowest = TRUE))))
#     # add stratified data to explanatory variables
# data.ndvi[, 4:7] <- data.continuous
# 
# g3 <- gd(NDVIchange ~ ., data = data.ndvi)
# g3
# plot(g3)

## ----eval = FALSE-------------------------------------------------------------
# ## categorical explanatory variables
# rm1 <- riskmean(NDVIchange ~ Climatezone + Mining, data = ndvi_40)
# rm1
# plot(rm1)
# ## multiple variables inclusing continuous variables
# rm2 <- riskmean(NDVIchange ~ ., data = data.ndvi)
# rm2
# plot(rm2)

## ----eval = FALSE-------------------------------------------------------------
# ## categorical explanatory variables
# gr1 <- gdrisk(NDVIchange ~ Climatezone + Mining, data = ndvi_40)
# gr1
# plot(gr1)
# ## multiple variables inclusing continuous variables
# gr2 <- gdrisk(NDVIchange ~ ., data = data.ndvi)
# gr2
# plot(gr2)

## ----eval = FALSE-------------------------------------------------------------
# ## categorical explanatory variables
# gi1 <- gdinteract(NDVIchange ~ Climatezone + Mining, data = ndvi_40)
# gi1
# ## multiple variables inclusing continuous variables
# gi2 <- gdinteract(NDVIchange ~ ., data = data.ndvi)
# gi2
# plot(gi2)

## ----eval = FALSE-------------------------------------------------------------
# ## categorical explanatory variables
# ge1 <- gdeco(NDVIchange ~ Climatezone + Mining, data = ndvi_40)
# ge1
# ## multiple variables inclusing continuous variables
# gd3 <- gdeco(NDVIchange ~ ., data = data.ndvi)
# gd3
# plot(gd3)

## ----eval = FALSE-------------------------------------------------------------
# ndvilist <- list(ndvi_20, ndvi_30, ndvi_40, ndvi_50)
# su <- c(20,30,40,50) ## sizes of spatial units
# ## "gdm" function
# gdlist <- lapply(ndvilist, function(x){
#   gdm(NDVIchange ~ Climatezone + Mining + Tempchange + GDP,
#       continuous_variable = c("Tempchange", "GDP"),
#       data = x, discmethod = "quantile", discitv = 6)
# })
# sesu(gdlist, su) ## size effects of spatial units

Try the GD package in your browser

Any scripts or data that you put into this service are public.

GD documentation built on April 4, 2025, 12:39 a.m.