inst/doc/OverGFM_exam.R

## ----eval = FALSE-------------------------------------------------------------
#  library("GFM")

## ----eval = FALSE-------------------------------------------------------------
#  library("rrpack")

## ----eval = FALSE-------------------------------------------------------------
#  library("PCAmixdata")

## ----eval = FALSE-------------------------------------------------------------
#  gendata_s2 <- function (seed = 1, n = 500, p = 500,
#                          type =  c('homonorm', 'heternorm', 'pois', 'bino', 'norm_pois',
#                                    'pois_bino', 'npb'),
#                          q = 6, rho = c(0.05, 0.2, 0.1), n_bin=1, sigma_eps=0.1){
#    library(MASS)
#    Diag <- GFM:::Diag
#    cor.mat <- GFM:::cor.mat
#    type <- match.arg(type)
#    rho_gauss <- rho[1]
#    rho_pois <- rho[2]
#    rho_binary <- rho[3]
#    set.seed(seed)
#    Z <- matrix(rnorm(p * q), p, q)
#    if (type == "homonorm") {
#      g1 <- 1:p
#      Z <- rho_gauss * Z
#    }else if (type == "heternorm"){
#      g1 <- 1:p
#      Z <- rho_gauss * Z
#    }else if(type == "pois"){
#      g1 <- 1:p
#      Z <- rho_pois * Z
#    }else if(type == 'bino'){
#      g1 <- 1:p
#      Z <- rho_binary * Z
#    }else if (type == "norm_pois") {
#      g1 <- 1:floor(p/2)
#      g2 <- (floor(p/2) + 1):p
#      Z[g1, ] <- rho_gauss * Z[g1, ]
#      Z[g2, ] <- rho_pois * Z[g2, ]
#    }else if (type == "pois_bino") {
#      g1 <- 1:floor(p/2)
#      g2 <- (floor(p/2) + 1):p
#  
#      Z[g1, ] <- rho_pois * Z[g1, ]
#      Z[g2, ] <- rho_binary * Z[g2, ]
#    }else if(type == 'npb'){
#      g1 <- 1:floor(p/3)
#      g2 <- (floor(p/3) + 1):floor(p*2/3)
#      g3 <- (floor(2*p/3) + 1):p
#      Z[g1, ] <- rho_gauss * Z[g1, ]
#      Z[g2, ] <- rho_pois * Z[g2, ]
#      Z[g3, ] <- rho_binary * Z[g3, ]
#    }
#    svdZ <- svd(Z)
#    B1 <- svdZ$u %*% Diag(svdZ$d[1:q])
#    B0 <- B1 %*% Diag(sign(B1[1, ]))
#    mu0 <- 0.4 * rnorm(p)
#    Bm0 <- cbind(mu0, B0)
#  
#    set.seed(seed)
#    H <- mvrnorm(n, mu = rep(0, q), cor.mat(q, 0.5))
#    svdH <- svd(cov(H))
#    H0 <- scale(H, scale = F) %*% svdH$u %*% Diag(1/sqrt(svdH$d)) %*%
#      svdH$v
#    if (type == "homonorm") {
#      X <- H0 %*% t(B0) + matrix(mu0, n, p, byrow = T) + mvrnorm(n,
#                                                                 rep(0, p), sigma_eps*diag(p))
#      group <- rep(1, p)
#      XList <- list(X)
#      types <- c("gaussian")
#  
#    }else if (type == "heternorm") {
#      sigmas = sigma_eps*(0.1 + 4 * runif(p))
#      X <- H0 %*% t(B0) + matrix(mu0, n, p, byrow = T) + mvrnorm(n,
#                                                                 rep(0, p), diag(sigmas))
#      group <- rep(1, p)
#  
#      XList <- list(X)
#      types <- c("gaussian")
#  
#    }else if (type == "pois") {
#  
#  
#      Eta <- H0 %*% t(B0) + matrix(mu0, n, p, byrow = T) + mvrnorm(n,rep(0, p),
#                                                                   sigma_eps*diag(p))
#      mu <- exp(Eta)
#      X <- matrix(rpois(n * p, lambda = mu), n, p)
#      group <- rep(1, p)
#      XList <- list(X[,g1])
#      types <- c("poisson")
#    }else if(type == 'bino'){
#  
#      Eta <- cbind(1, H0) %*% t(Bm0[g1, ]) + mvrnorm(n,rep(0, p), sigma_eps*diag(p))
#      mu <- 1/(1 + exp(-Eta))
#      X <- matrix(rbinom(prod(dim(mu)), n_bin, mu), n, p)
#      group <- rep(1, p)
#  
#      XList <- list(X[,g1])
#      types <- c("binomial")
#    }else if (type == "norm_pois") {
#  
#      Eps <- mvrnorm(n,rep(0, p), sigma_eps*diag(p))
#      mu1 <- cbind(1, H0) %*% t(Bm0[g1, ]) + Eps[, g1]
#      mu2 <- exp(cbind(1, H0) %*% t(Bm0[g2, ])+ Eps[, g2])
#      X <- cbind(matrix(rnorm(prod(dim(mu1)), mu1, 1), n, floor(p/2)),
#                 matrix(rpois(prod(dim(mu2)), mu2), n, ncol(mu2)))
#      group <- c(rep(1, length(g1)), rep(2, length(g2)))
#  
#      XList <- list(X[,g1], X[,g2])
#      types <- c("gaussian", "poisson")
#  
#    }else if (type == "pois_bino") {
#  
#      Eps <- mvrnorm(n,rep(0, p), sigma_eps*diag(p))
#      mu1 <- exp(cbind(1, H0) %*% t(Bm0[g1, ])+ Eps[,g1])
#      mu2 <- 1/(1 + exp(-cbind(1, H0) %*% t(Bm0[g2, ])- Eps[,g2]))
#      X <- cbind(matrix(rpois(prod(dim(mu1)), mu1), n, ncol(mu1)),
#                 matrix(rbinom(prod(dim(mu2)), n_bin, mu2), n, ncol(mu2)))
#      group <- c(rep(1, length(g1)), rep(2, length(g2)))
#      XList <- list(X[,g1], X[,g2])
#      types <- c("poisson", 'binomial')
#    }else if(type == 'npb'){
#  
#      Eps <- mvrnorm(n,rep(0, p), sigma_eps*diag(p))
#      mu11 <- cbind(1, H0) %*% t(Bm0[g1, ]) + Eps[,g1]
#      mu1 <- exp(cbind(1, H0) %*% t(Bm0[g2, ]) +  Eps[,g2])
#      mu2 <- 1/(1 + exp(-cbind(1, H0) %*% t(Bm0[g3, ])-  Eps[,g3]))
#      X <- cbind(matrix(rnorm(prod(dim(mu11)),mu11, 1), n, ncol(mu11)),
#                 matrix(rpois(prod(dim(mu1)), mu1), n, ncol(mu1)),
#                 matrix(rbinom(prod(dim(mu2)), n_bin, mu2), n, ncol(mu2)))
#      group <- c(rep(1, length(g1)), rep(2, length(g2)), rep(3, length(g3)))
#      XList <- list(X[,g1], X[,g2], X[,g3])
#      types <- c("gaussian", "poisson", 'binomial')
#    }
#  
#    return(list(X=X, XList = XList,  types= types, B0 = B0, H0 = H0, mu0 = mu0))
#  }

## ----eval = FALSE-------------------------------------------------------------
#  Diag <- GFM:::Diag
#  ## Compare with MRRR
#  mrrr_run <- function(Y, rank0,family=list(poisson()),
#                       familygroup,  epsilon = 1e-4, sv.tol = 1e-2,lambdaSVD=0.1, maxIter = 2000, trace=TRUE){
#    # epsilon = 1e-4; sv.tol = 1e-2; maxIter = 30; trace=TRUE
#  
#    require(rrpack)
#  
#    n <- nrow(Y); p <- ncol(Y)
#    X <- cbind(1, diag(n))
#  
#  
#    svdX0d1 <- svd(X)$d[1]
#    init1 = list(kappaC0 = svdX0d1 * 5)
#    offset = NULL
#    control = list(epsilon = epsilon, sv.tol = sv.tol, maxit = maxIter,
#                   trace = trace, gammaC0 = 1.1, plot.cv = TRUE,
#                   conv.obj = TRUE)
#    res_mrrr <- mrrr(Y=Y, X=X[,-1], family = family, familygroup = familygroup,
#                     penstr = list(penaltySVD = "rankCon", lambdaSVD = lambdaSVD),
#                     control = control, init = init1, maxrank = rank0)
#  
#    hmu <- res_mrrr$coef[1,]
#    hTheta <- res_mrrr$coef[-1,]
#    #print(dim(hTheta))
#    # Matrix::rankMatrix(hTheta)
#    svd_Theta <- svd(hTheta, nu=rank0,nv =rank0)
#    hH <- svd_Theta$u
#    hB <- svd_Theta$v %*% Diag(svd_Theta$d[1:rank0])
#    #print(dim(svd_Theta$v))
#    #print(dim(Diag(svd_Theta$d)))
#    return(list(hH=hH, hB=hB, hmu= hmu))
#  }

## ----eval = FALSE-------------------------------------------------------------
#  factorm <- function(X, q=NULL){
#  
#    signrevise <- GFM:::signrevise
#    if ((!is.null(q)) && (q < 1))
#      stop("q must be NULL or other positive integer!")
#    if (!is.matrix(X))
#      stop("X must be a matrix.")
#    mu <- colMeans(X)
#    X <- scale(X, scale = FALSE)
#    n <- nrow(X)
#    p <- ncol(X)
#    if (p > n) {
#      svdX <- eigen(X %*% t(X))
#      evalues <- svdX$values
#      eigrt <- evalues[1:(21 - 1)]/evalues[2:21]
#      if (is.null(q)) {
#        q <- which.max(eigrt)
#      }
#      hatF <- as.matrix(svdX$vector[, 1:q] * sqrt(n))
#      B2 <- n^(-1) * t(X) %*% hatF
#      sB <- sign(B2[1, ])
#      hB <- B2 * matrix(sB, nrow = p, ncol = q, byrow = TRUE)
#      hH <- sapply(1:q, function(k) hatF[, k] * sign(B2[1,
#      ])[k])
#    }
#    else {
#      svdX <- eigen(t(X) %*% X)
#      evalues <- svdX$values
#      eigrt <- evalues[1:(21 - 1)]/evalues[2:21]
#      if (is.null(q)) {
#        q <- which.max(eigrt)
#      }
#      hB1 <- as.matrix(svdX$vector[, 1:q])
#      hH1 <- n^(-1) * X %*% hB1
#      svdH <- svd(hH1)
#      hH2 <- signrevise(svdH$u * sqrt(n), hH1)
#      if (q == 1) {
#        hB1 <- hB1 %*% svdH$d[1:q] * sqrt(n)
#      }
#      else {
#        hB1 <- hB1 %*% diag(svdH$d[1:q]) * sqrt(n)
#      }
#      sB <- sign(hB1[1, ])
#      hB <- hB1 * matrix(sB, nrow = p, ncol = q, byrow = TRUE)
#      hH <- sapply(1:q, function(j) hH2[, j] * sB[j])
#    }
#    sigma2vec <- colMeans((X - hH %*% t(hB))^2)
#    res <- list()
#    res$hH <- hH
#    res$hB <- hB
#    res$mu <- mu
#    res$q <- q
#    res$sigma2vec <- sigma2vec
#    res$propvar <- sum(evalues[1:q])/sum(evalues)
#    res$egvalues <- evalues
#    attr(res, "class") <- "fac"
#    return(res)
#  }

## ----eval = FALSE-------------------------------------------------------------
#    q <- 6
#    datList <- gendata_s2(seed = 1, type= 'npb', n=500, p=500, q=q,
#                          rho= c(0.05, 0.2, 0.1) ,sigma_eps = 0.7)

## ----eval = FALSE-------------------------------------------------------------
#  trace_statistic_fun <- function(H, H0){
#  
#    tr_fun <- function(x) sum(diag(x))
#    mat1 <- t(H0) %*% H %*% ginv(t(H) %*% H) %*% t(H) %*% H0
#  
#    tr_fun(mat1) / tr_fun(t(H0) %*% H0)
#  
#  }

## ----eval = FALSE-------------------------------------------------------------
#    gfm_over <- overdispersedGFM(datList$XList, types=datList$types, q=q)
#    OverGFM_H <- trace_statistic_fun(gfm_over$hH, datList$H0)
#    OverGFM_G <- trace_statistic_fun(cbind(gfm_over$hmu,gfm_over$hB),
#                                          cbind(datList$mu0,datList$B0))

## ----eval = FALSE-------------------------------------------------------------
#    lfm <- factorm(datList$X, q=q)
#    gfm_am <- gfm(datList$XList, types=datList$types, q=q, algorithm = "AM",
#                  maxIter = 15)
#    familygroup <- lapply(1:length(datList$types), function(j) rep(j,                                                         ncol(datList$XList[[j]])))
#    res_mrrr <- mrrr_run(datList$X, rank0=q, family=list(gaussian(), poisson(),
#                                                         binomial()),familygroup =
#                           unlist(familygroup), maxIter=2000)
#    dat_bino <- as.data.frame(datList$XList[[3]])
#    for(jj in 1:ncol(dat_bino)) dat_bino[,jj] <- factor(dat_bino[,jj])
#    dat_norm <- as.data.frame(cbind(datList$XList[[1]],datList$XList[[2]]))
#    res_pcamix <- PCAmix(X.quanti = dat_norm, X.quali = dat_bino,rename.level=TRUE, ndim=q,
#                         graph=F)
#    reslits <- lapply(res_pcamix$coef, function(x) x[c(seq(2, ncol(dat_norm)+1, by=1),
#                                                       seq(ncol(dat_norm)+3,
#                                                           nrow(res_pcamix$coef[[1]]), by=2)),])
#    loadings <- Reduce(cbind, reslits)
#    GFM_H <- trace_statistic_fun(gfm_am$hH, datList$H0)
#    GFM_G <- trace_statistic_fun(cbind(gfm_am$hmu,gfm_am$hB),
#                                      cbind(datList$mu0,datList$B0))
#    MRRR_H <- trace_statistic_fun(res_mrrr$hH, datList$H0)
#    MRRR_G <- trace_statistic_fun(cbind(res_mrrr$hmu,res_mrrr$hB),
#                                       cbind(datList$mu0,datList$B0))
#    PCAmix_H <- trace_statistic_fun(res_pcamix$ind$coord, datList$H0)
#    PCAmix_G <- trace_statistic_fun(loadings, cbind(datList$mu0,datList$B0))
#    LFM_H <- trace_statistic_fun(lfm$hH, datList$H0)
#    LFM_G <- trace_statistic_fun(cbind(lfm$mu,lfm$hB), cbind(datList$mu0,datList$B0))

## ----eval = FALSE-------------------------------------------------------------
#  library(ggplot2)
#  value <- c(OverGFM_H,OverGFM_G,GFM_H,GFM_G,MRRR_H,MRRR_G,PCAmix_H,PCAmix_G,LFM_H,LFM_G)
#  df <- data.frame(Value = value,
#                   Methods = factor(rep(c("OverGFM","GFM","MRRR","PCAmix","LFM"), each = 2),
#                                    levels = c("OverGFM","GFM","MRRR","PCAmix","LFM")),
#                   Trace = factor(rep(c("Tr_H","Tr_Gamma"), times = 5),levels = c("Tr_H","Tr_Gamma")))
#  ggplot(data = df,aes(x = Methods, y = Value, colour = Methods, fill=Methods)) +
#    geom_bar(stat="identity") +
#    facet_grid(Trace ~ .,drop = TRUE, scales = "free_x") + theme_bw() +
#    theme(axis.text.x = element_text(size = 10,angle = 25, hjust = 1, vjust = 1),
#          axis.text.y = element_text(size = 10, hjust = 1, vjust = 1),
#          axis.title.x = element_text(size = 15),
#          axis.title.y = element_text(size = 15),
#          legend.title=element_blank())+
#    labs( x="Method", y = "Trace statistic ")
#  

## ----eval = FALSE-------------------------------------------------------------
#  sessionInfo()

Try the GFM package in your browser

Any scripts or data that you put into this service are public.

GFM documentation built on Jan. 18, 2026, 5:06 p.m.