Nothing
## ----eval = FALSE-------------------------------------------------------------
# library("GFM")
## ----eval = FALSE-------------------------------------------------------------
# library("rrpack")
## ----eval = FALSE-------------------------------------------------------------
# library("PCAmixdata")
## ----eval = FALSE-------------------------------------------------------------
# gendata_s2 <- function (seed = 1, n = 500, p = 500,
# type = c('homonorm', 'heternorm', 'pois', 'bino', 'norm_pois',
# 'pois_bino', 'npb'),
# q = 6, rho = c(0.05, 0.2, 0.1), n_bin=1, sigma_eps=0.1){
# library(MASS)
# Diag <- GFM:::Diag
# cor.mat <- GFM:::cor.mat
# type <- match.arg(type)
# rho_gauss <- rho[1]
# rho_pois <- rho[2]
# rho_binary <- rho[3]
# set.seed(seed)
# Z <- matrix(rnorm(p * q), p, q)
# if (type == "homonorm") {
# g1 <- 1:p
# Z <- rho_gauss * Z
# }else if (type == "heternorm"){
# g1 <- 1:p
# Z <- rho_gauss * Z
# }else if(type == "pois"){
# g1 <- 1:p
# Z <- rho_pois * Z
# }else if(type == 'bino'){
# g1 <- 1:p
# Z <- rho_binary * Z
# }else if (type == "norm_pois") {
# g1 <- 1:floor(p/2)
# g2 <- (floor(p/2) + 1):p
# Z[g1, ] <- rho_gauss * Z[g1, ]
# Z[g2, ] <- rho_pois * Z[g2, ]
# }else if (type == "pois_bino") {
# g1 <- 1:floor(p/2)
# g2 <- (floor(p/2) + 1):p
#
# Z[g1, ] <- rho_pois * Z[g1, ]
# Z[g2, ] <- rho_binary * Z[g2, ]
# }else if(type == 'npb'){
# g1 <- 1:floor(p/3)
# g2 <- (floor(p/3) + 1):floor(p*2/3)
# g3 <- (floor(2*p/3) + 1):p
# Z[g1, ] <- rho_gauss * Z[g1, ]
# Z[g2, ] <- rho_pois * Z[g2, ]
# Z[g3, ] <- rho_binary * Z[g3, ]
# }
# svdZ <- svd(Z)
# B1 <- svdZ$u %*% Diag(svdZ$d[1:q])
# B0 <- B1 %*% Diag(sign(B1[1, ]))
# mu0 <- 0.4 * rnorm(p)
# Bm0 <- cbind(mu0, B0)
#
# set.seed(seed)
# H <- mvrnorm(n, mu = rep(0, q), cor.mat(q, 0.5))
# svdH <- svd(cov(H))
# H0 <- scale(H, scale = F) %*% svdH$u %*% Diag(1/sqrt(svdH$d)) %*%
# svdH$v
# if (type == "homonorm") {
# X <- H0 %*% t(B0) + matrix(mu0, n, p, byrow = T) + mvrnorm(n,
# rep(0, p), sigma_eps*diag(p))
# group <- rep(1, p)
# XList <- list(X)
# types <- c("gaussian")
#
# }else if (type == "heternorm") {
# sigmas = sigma_eps*(0.1 + 4 * runif(p))
# X <- H0 %*% t(B0) + matrix(mu0, n, p, byrow = T) + mvrnorm(n,
# rep(0, p), diag(sigmas))
# group <- rep(1, p)
#
# XList <- list(X)
# types <- c("gaussian")
#
# }else if (type == "pois") {
#
#
# Eta <- H0 %*% t(B0) + matrix(mu0, n, p, byrow = T) + mvrnorm(n,rep(0, p),
# sigma_eps*diag(p))
# mu <- exp(Eta)
# X <- matrix(rpois(n * p, lambda = mu), n, p)
# group <- rep(1, p)
# XList <- list(X[,g1])
# types <- c("poisson")
# }else if(type == 'bino'){
#
# Eta <- cbind(1, H0) %*% t(Bm0[g1, ]) + mvrnorm(n,rep(0, p), sigma_eps*diag(p))
# mu <- 1/(1 + exp(-Eta))
# X <- matrix(rbinom(prod(dim(mu)), n_bin, mu), n, p)
# group <- rep(1, p)
#
# XList <- list(X[,g1])
# types <- c("binomial")
# }else if (type == "norm_pois") {
#
# Eps <- mvrnorm(n,rep(0, p), sigma_eps*diag(p))
# mu1 <- cbind(1, H0) %*% t(Bm0[g1, ]) + Eps[, g1]
# mu2 <- exp(cbind(1, H0) %*% t(Bm0[g2, ])+ Eps[, g2])
# X <- cbind(matrix(rnorm(prod(dim(mu1)), mu1, 1), n, floor(p/2)),
# matrix(rpois(prod(dim(mu2)), mu2), n, ncol(mu2)))
# group <- c(rep(1, length(g1)), rep(2, length(g2)))
#
# XList <- list(X[,g1], X[,g2])
# types <- c("gaussian", "poisson")
#
# }else if (type == "pois_bino") {
#
# Eps <- mvrnorm(n,rep(0, p), sigma_eps*diag(p))
# mu1 <- exp(cbind(1, H0) %*% t(Bm0[g1, ])+ Eps[,g1])
# mu2 <- 1/(1 + exp(-cbind(1, H0) %*% t(Bm0[g2, ])- Eps[,g2]))
# X <- cbind(matrix(rpois(prod(dim(mu1)), mu1), n, ncol(mu1)),
# matrix(rbinom(prod(dim(mu2)), n_bin, mu2), n, ncol(mu2)))
# group <- c(rep(1, length(g1)), rep(2, length(g2)))
# XList <- list(X[,g1], X[,g2])
# types <- c("poisson", 'binomial')
# }else if(type == 'npb'){
#
# Eps <- mvrnorm(n,rep(0, p), sigma_eps*diag(p))
# mu11 <- cbind(1, H0) %*% t(Bm0[g1, ]) + Eps[,g1]
# mu1 <- exp(cbind(1, H0) %*% t(Bm0[g2, ]) + Eps[,g2])
# mu2 <- 1/(1 + exp(-cbind(1, H0) %*% t(Bm0[g3, ])- Eps[,g3]))
# X <- cbind(matrix(rnorm(prod(dim(mu11)),mu11, 1), n, ncol(mu11)),
# matrix(rpois(prod(dim(mu1)), mu1), n, ncol(mu1)),
# matrix(rbinom(prod(dim(mu2)), n_bin, mu2), n, ncol(mu2)))
# group <- c(rep(1, length(g1)), rep(2, length(g2)), rep(3, length(g3)))
# XList <- list(X[,g1], X[,g2], X[,g3])
# types <- c("gaussian", "poisson", 'binomial')
# }
#
# return(list(X=X, XList = XList, types= types, B0 = B0, H0 = H0, mu0 = mu0))
# }
## ----eval = FALSE-------------------------------------------------------------
# Diag <- GFM:::Diag
# ## Compare with MRRR
# mrrr_run <- function(Y, rank0,family=list(poisson()),
# familygroup, epsilon = 1e-4, sv.tol = 1e-2,lambdaSVD=0.1, maxIter = 2000, trace=TRUE){
# # epsilon = 1e-4; sv.tol = 1e-2; maxIter = 30; trace=TRUE
#
# require(rrpack)
#
# n <- nrow(Y); p <- ncol(Y)
# X <- cbind(1, diag(n))
#
#
# svdX0d1 <- svd(X)$d[1]
# init1 = list(kappaC0 = svdX0d1 * 5)
# offset = NULL
# control = list(epsilon = epsilon, sv.tol = sv.tol, maxit = maxIter,
# trace = trace, gammaC0 = 1.1, plot.cv = TRUE,
# conv.obj = TRUE)
# res_mrrr <- mrrr(Y=Y, X=X[,-1], family = family, familygroup = familygroup,
# penstr = list(penaltySVD = "rankCon", lambdaSVD = lambdaSVD),
# control = control, init = init1, maxrank = rank0)
#
# hmu <- res_mrrr$coef[1,]
# hTheta <- res_mrrr$coef[-1,]
# #print(dim(hTheta))
# # Matrix::rankMatrix(hTheta)
# svd_Theta <- svd(hTheta, nu=rank0,nv =rank0)
# hH <- svd_Theta$u
# hB <- svd_Theta$v %*% Diag(svd_Theta$d[1:rank0])
# #print(dim(svd_Theta$v))
# #print(dim(Diag(svd_Theta$d)))
# return(list(hH=hH, hB=hB, hmu= hmu))
# }
## ----eval = FALSE-------------------------------------------------------------
# factorm <- function(X, q=NULL){
#
# signrevise <- GFM:::signrevise
# if ((!is.null(q)) && (q < 1))
# stop("q must be NULL or other positive integer!")
# if (!is.matrix(X))
# stop("X must be a matrix.")
# mu <- colMeans(X)
# X <- scale(X, scale = FALSE)
# n <- nrow(X)
# p <- ncol(X)
# if (p > n) {
# svdX <- eigen(X %*% t(X))
# evalues <- svdX$values
# eigrt <- evalues[1:(21 - 1)]/evalues[2:21]
# if (is.null(q)) {
# q <- which.max(eigrt)
# }
# hatF <- as.matrix(svdX$vector[, 1:q] * sqrt(n))
# B2 <- n^(-1) * t(X) %*% hatF
# sB <- sign(B2[1, ])
# hB <- B2 * matrix(sB, nrow = p, ncol = q, byrow = TRUE)
# hH <- sapply(1:q, function(k) hatF[, k] * sign(B2[1,
# ])[k])
# }
# else {
# svdX <- eigen(t(X) %*% X)
# evalues <- svdX$values
# eigrt <- evalues[1:(21 - 1)]/evalues[2:21]
# if (is.null(q)) {
# q <- which.max(eigrt)
# }
# hB1 <- as.matrix(svdX$vector[, 1:q])
# hH1 <- n^(-1) * X %*% hB1
# svdH <- svd(hH1)
# hH2 <- signrevise(svdH$u * sqrt(n), hH1)
# if (q == 1) {
# hB1 <- hB1 %*% svdH$d[1:q] * sqrt(n)
# }
# else {
# hB1 <- hB1 %*% diag(svdH$d[1:q]) * sqrt(n)
# }
# sB <- sign(hB1[1, ])
# hB <- hB1 * matrix(sB, nrow = p, ncol = q, byrow = TRUE)
# hH <- sapply(1:q, function(j) hH2[, j] * sB[j])
# }
# sigma2vec <- colMeans((X - hH %*% t(hB))^2)
# res <- list()
# res$hH <- hH
# res$hB <- hB
# res$mu <- mu
# res$q <- q
# res$sigma2vec <- sigma2vec
# res$propvar <- sum(evalues[1:q])/sum(evalues)
# res$egvalues <- evalues
# attr(res, "class") <- "fac"
# return(res)
# }
## ----eval = FALSE-------------------------------------------------------------
# q <- 6
# datList <- gendata_s2(seed = 1, type= 'npb', n=500, p=500, q=q,
# rho= c(0.05, 0.2, 0.1) ,sigma_eps = 0.7)
## ----eval = FALSE-------------------------------------------------------------
# trace_statistic_fun <- function(H, H0){
#
# tr_fun <- function(x) sum(diag(x))
# mat1 <- t(H0) %*% H %*% ginv(t(H) %*% H) %*% t(H) %*% H0
#
# tr_fun(mat1) / tr_fun(t(H0) %*% H0)
#
# }
## ----eval = FALSE-------------------------------------------------------------
# gfm_over <- overdispersedGFM(datList$XList, types=datList$types, q=q)
# OverGFM_H <- trace_statistic_fun(gfm_over$hH, datList$H0)
# OverGFM_G <- trace_statistic_fun(cbind(gfm_over$hmu,gfm_over$hB),
# cbind(datList$mu0,datList$B0))
## ----eval = FALSE-------------------------------------------------------------
# lfm <- factorm(datList$X, q=q)
# gfm_am <- gfm(datList$XList, types=datList$types, q=q, algorithm = "AM",
# maxIter = 15)
# familygroup <- lapply(1:length(datList$types), function(j) rep(j, ncol(datList$XList[[j]])))
# res_mrrr <- mrrr_run(datList$X, rank0=q, family=list(gaussian(), poisson(),
# binomial()),familygroup =
# unlist(familygroup), maxIter=2000)
# dat_bino <- as.data.frame(datList$XList[[3]])
# for(jj in 1:ncol(dat_bino)) dat_bino[,jj] <- factor(dat_bino[,jj])
# dat_norm <- as.data.frame(cbind(datList$XList[[1]],datList$XList[[2]]))
# res_pcamix <- PCAmix(X.quanti = dat_norm, X.quali = dat_bino,rename.level=TRUE, ndim=q,
# graph=F)
# reslits <- lapply(res_pcamix$coef, function(x) x[c(seq(2, ncol(dat_norm)+1, by=1),
# seq(ncol(dat_norm)+3,
# nrow(res_pcamix$coef[[1]]), by=2)),])
# loadings <- Reduce(cbind, reslits)
# GFM_H <- trace_statistic_fun(gfm_am$hH, datList$H0)
# GFM_G <- trace_statistic_fun(cbind(gfm_am$hmu,gfm_am$hB),
# cbind(datList$mu0,datList$B0))
# MRRR_H <- trace_statistic_fun(res_mrrr$hH, datList$H0)
# MRRR_G <- trace_statistic_fun(cbind(res_mrrr$hmu,res_mrrr$hB),
# cbind(datList$mu0,datList$B0))
# PCAmix_H <- trace_statistic_fun(res_pcamix$ind$coord, datList$H0)
# PCAmix_G <- trace_statistic_fun(loadings, cbind(datList$mu0,datList$B0))
# LFM_H <- trace_statistic_fun(lfm$hH, datList$H0)
# LFM_G <- trace_statistic_fun(cbind(lfm$mu,lfm$hB), cbind(datList$mu0,datList$B0))
## ----eval = FALSE-------------------------------------------------------------
# library(ggplot2)
# value <- c(OverGFM_H,OverGFM_G,GFM_H,GFM_G,MRRR_H,MRRR_G,PCAmix_H,PCAmix_G,LFM_H,LFM_G)
# df <- data.frame(Value = value,
# Methods = factor(rep(c("OverGFM","GFM","MRRR","PCAmix","LFM"), each = 2),
# levels = c("OverGFM","GFM","MRRR","PCAmix","LFM")),
# Trace = factor(rep(c("Tr_H","Tr_Gamma"), times = 5),levels = c("Tr_H","Tr_Gamma")))
# ggplot(data = df,aes(x = Methods, y = Value, colour = Methods, fill=Methods)) +
# geom_bar(stat="identity") +
# facet_grid(Trace ~ .,drop = TRUE, scales = "free_x") + theme_bw() +
# theme(axis.text.x = element_text(size = 10,angle = 25, hjust = 1, vjust = 1),
# axis.text.y = element_text(size = 10, hjust = 1, vjust = 1),
# axis.title.x = element_text(size = 15),
# axis.title.y = element_text(size = 15),
# legend.title=element_blank())+
# labs( x="Method", y = "Trace statistic ")
#
## ----eval = FALSE-------------------------------------------------------------
# sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.