Description Usage Arguments Value Examples
Generates n random samples from a G-Latent Variable Model. The caller can specify the graph structure on the latent variables via several parameters. The magnitude of the non-zero entries in the population precision matrix can also be specified. Observed variables are assigned uniformly at random to K groups with minimum size m.
| 1 2 3 | gforce.generator(K, d, n, m, graph = "DeltaC", num_hubs = NULL,
  band_size = 3, cov_gap_mult = 1, error_base = 0.25,
  error_add = 0.25, corr_value = 0.3, normalize = TRUE)
 | 
| K | number of clusters. | 
| d | dimension of the observed random vector. | 
| n | number of samples. | 
| m | minimal group size. | 
| graph | latent graph structure. Can be 'scalefree', 'hub', 'band', 'identity' or 'DeltaC'. | 
| num_hubs | number of hubs in the latent graph. Ignored unless  | 
| band_size | size of bands in the latent graph. Ignored unless  | 
| cov_gap_mult | scales the size of Δ C. Ignored unless  | 
| error_base | minimum variance of errors. | 
| error_add | size of range of possible variances for errors. | 
| corr_value | size of off diagonal entries in latent precision matrix. | 
| normalize | logical. If  | 
An S3 object with the slots Z,E,X,group_assignments,CStar,Theta_Star
| 1 2 3 | dat <- gforce.generator(5,20,20,3)
dat <- gforce.generator(10,100,100,3,graph='hub',num_hubs=2)
dat <- gforce.generator(10,100,100,3,graph='band',band_size=3)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.