| GGUM | R Documentation | 
GGUM estimates all item parameters for the GGUM.
GGUM(
  data,
  C,
  SE = TRUE,
  precision = 4,
  N.nodes = 30,
  max.outer = 60,
  max.inner = 60,
  tol = 0.001
)
data | 
 The   | 
C | 
 
  | 
SE | 
 Logical value: Estimate the standard errors of the item parameter 
estimates? Default is   | 
precision | 
 Number of decimal places of the results (default = 4).  | 
N.nodes | 
 Number of nodes for numerical integration (default = 30).  | 
max.outer | 
 Maximum number of outer iterations (default = 60).  | 
max.inner | 
 Maximum number of inner iterations (default = 60).  | 
tol | 
 Convergence tolerance (default = .001).  | 
The function returns a list (an object of class GGUM) with 12
elements: 
data | 
 Data matrix.  | 
C | 
 Vector   | 
alpha | 
 The estimated discrimination parameters for the GGUM.  | 
delta | 
 The estimated difficulty parameters.  | 
taus | 
 The estimated threshold parameters.  | 
SE | 
 The standard errors of the item parameters estimates.  | 
rows.rm | 
 Indices of rows removed from the data before fitting the model, due to complete disagreement.  | 
N.nodes | 
 Number of nodes for numerical integration.  | 
tol.conv | 
 Loss function value at convergence (it is smaller than 
  | 
iter.inner | 
 Number of inner iterations (it is equal to 1 upon convergence).  | 
model | 
 Model fitted.  | 
InformationCrit | 
 Loglikelihood, number of model parameters, AIC, BIC, CAIC.  | 
The generalized graded unfolding model (GGUM; Roberts & Laughlin, 1996; Roberts et al., 2000) is given by
P(Z_i=z|\theta_n) =
  \frac{f(z) + f(M-z)}{\sum_{w=0}^C\left[f(w)+f(M-w)\right]}, 
f(w) = exp\left\{\alpha_i\left[w(\theta_n-\delta_i)- 
  \sum_{k=0}^w\tau_{ik}\right]\right\}, 
where:
 The subscripts i and n identify the item
and person, respectively. 
z=0,\ldots,C denotes
the observed answer response. 
M = 2C + 1 is the number of
subjective response options minus 1. 
\theta_n is the
latent trait score for person n. 
\alpha_i is the
item slope (discrimination). 
\delta_i is the item
location. 
\tau_{ik} (k=1,\ldots,M
) are the threshold parameters. 
Parameter \tau_{i0} is arbitrarily constrained to zero and
the threshold parameters are constrained to symmetry around zero, that is, 
\tau_{i(C+1)}=0 and 
\tau_{iz}=-\tau_{i(M-z+1)} for 
z\not= 0.
The marginal maximum likelihood algorithm of Roberts et al. (2000) was implemented.
Jorge N. Tendeiro, tendeiro@hiroshima-u.ac.jp
RobertsLaughlin1996GGUM
\insertRefRobertsetal2000GGUM
## Not run: 
# Example 1 - Same value C across items:
# Generate data:
gen1 <- GenData.GGUM(2000, 10, 2, seed = 125)
# Fit the GGUM:
fit1 <- GGUM(gen1$data, 2)
# Compare true and estimated item parameters:
cbind(gen1$alpha, fit1$alpha)
cbind(gen1$delta, fit1$delta)
cbind(c(gen1$taus[, 4:5]), c(fit1$taus[, 4:5]))
# Example 2 - Different C across items:
# Generate data:
set.seed(1); C <- sample(3:5, 10, replace = TRUE)
gen2 <- GenData.GGUM(2000, 10, C, seed = 125)
# Fit the GGUM:
fit2 <- GGUM(gen2$data, C)
# Compare true and estimated item parameters:
cbind(gen2$alpha, fit2$alpha)
cbind(gen2$delta, fit2$delta)
cbind(c(gen2$taus[, 7:11]), c(fit2$taus[, 7:11]))
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.