Description Usage Arguments Value Examples
This function constructs empirical distributions of degree profiles for each vertex and then calculate distances between each pair of vertices, one from graph A and the other from graph B. The default used is the 1-Wasserstein distance. This function also matches vertices in A with vertices in B via the distance matrix between A and B. The distance matrix can be null and DPmatching will calculate it. A and B cannot be null when the distance matrix is null.
1 | DPmatching(A, B, W = NULL)
|
A, B |
Two 0/1 adjacency matrices. |
W |
A distance matrix between |
Dist |
The distance matrix between two graphs. |
match |
A vector containing matching results. |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | set.seed(2020)
n = 10; q = 1/2; s = 1; p = 1
Parent = matrix(rbinom(n*n, 1, q), nrow = n, ncol = n)
Parent[lower.tri(Parent)] = t(Parent)[lower.tri(Parent)]
diag(Parent) <- 0
### Generate graph A
dA = matrix(rbinom(n*n, 1, s), nrow = n, ncol=n);
dA[lower.tri(dA)] = t(dA)[lower.tri(dA)]
A1 = Parent*dA
tmp = rbinom(n, 1, p)
n.A = length(which(tmp == 1))
indA = sample(1:n, n.A, replace = FALSE)
A = A1[indA, indA]
### Generate graph B
dB = matrix(rbinom(n*n, 1, s), nrow = n, ncol=n);
dB[lower.tri(dB)] = t(dB)[lower.tri(dB)]
B1 = Parent*dB
tmp = rbinom(n, 1, p)
n.B = length(which(tmp == 1))
indB = sample(1:n, n.B, replace = FALSE)
B = B1[indB, indB]
DPmatching(A, B)
W = DPdistance(A, B)
DPmatching(A, B, W)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.