GNE.ceq | R Documentation |
Constrained equation reformulation via the extended KKT system of the GNE problem.
GNE.ceq(init, dimx, dimlam, grobj, arggrobj, heobj, argheobj,
constr, argconstr, grconstr, arggrconstr, heconstr, argheconstr,
dimmu, joint, argjoint, grjoint, arggrjoint, hejoint, arghejoint,
method="PR", control=list(), silent=TRUE, ...)
init |
Initial values for the parameters to be optimized over: |
dimx |
a vector of dimension for |
dimlam |
a vector of dimension for |
grobj |
gradient of the objective function (to be minimized), see details. |
arggrobj |
a list of additional arguments of the objective gradient. |
heobj |
Hessian of the objective function, see details. |
argheobj |
a list of additional arguments of the objective Hessian. |
constr |
constraint function ( |
argconstr |
a list of additional arguments of the constraint function. |
grconstr |
gradient of the constraint function, see details. |
arggrconstr |
a list of additional arguments of the constraint gradient. |
heconstr |
Hessian of the constraint function, see details. |
argheconstr |
a list of additional arguments of the constraint Hessian. |
dimmu |
a vector of dimension for |
joint |
joint function ( |
argjoint |
a list of additional arguments of the joint function. |
grjoint |
gradient of the joint function, see details. |
arggrjoint |
a list of additional arguments of the joint gradient. |
hejoint |
Hessian of the joint function, see details. |
arghejoint |
a list of additional arguments of the joint Hessian. |
method |
a character string specifying the method
|
control |
a list with control parameters. |
... |
further arguments to be passed to the optimization routine.
NOT to the functions |
silent |
a logical to get some traces. Default to |
GNE.ceq
solves the GNE problem via a constrained equation reformulation of the KKT system.
This approach consists in solving the extended Karush-Kuhn-Tucker
(KKT) system denoted by H(z)=0
, for z \in \Omega
where z
is formed by the players strategy
x
, the Lagrange multiplier \lambda
and the slate variable w
.
The root problem H(z)=0
is solved by an iterative scheme z_{n+1} = z_n + d_n
,
where the direction d_n
is computed in two different ways. Let J(x)=Jac H(x)
.
There are two possible methods either "PR"
for potential reduction algorithm
or "AS"
for affine scaled trust reduction algorithm.
The direction solves the system
H(z_n) + J(z_n) d = sigma_n a^T H(z_n) / ||a||_2^2 a
.
The direction solves the system
\min_p ||J(z_n)^T p + H(z_n)||^2
,
for p
such that ||p|| <= Delta_n||
.
...
are further arguments to be passed to the optimization routine,
that is global
, xscalm
, silent
.
A globalization scheme can be choosed using the global
argument.
Available schemes are
if global
is set to "qline"
or "gline"
, a line search
is used with the merit function being half of the L2 norm of Phi
, respectively with a
quadratic or a geometric implementation.
if global
is set to "pwldog"
, the Powell dogleg method
is used.
if global
is set to "none"
, no globalization is done.
The default value of global
is "gline"
when method="PR"
and
"pwldog"
when method="AS"
.
The xscalm
is a scaling parameter to used, either "fixed"
(default)
or "auto"
, for which scaling factors are calculated from the euclidean norms of the
columns of the jacobian matrix.
The silent
argument is a logical to report or not the optimization process, default
to FALSE
.
The control
argument is a list that can supply any of the following components:
xtol
The relative steplength tolerance.
When the relative steplength of all scaled x values is smaller than this value
convergence is declared. The default value is 10^{-8}
.
ftol
The function value tolerance.
Convergence is declared when the largest absolute function value is smaller than ftol
.
The default value is 10^{-8}
.
btol
The backtracking tolerance.
The default value is 10^{-2}
.
maxit
The maximum number of major iterations. The default value is 100 if a global strategy has been specified.
trace
Non-negative integer. A value of 1 will give a detailed report of the progress of the iteration, default 0.
sigma
, delta
, zeta
Parameters initialized to 1/2
,
1
, length(init)/2
, respectively, when method="PR"
.
forcingpar
Forcing parameter set to 0.1, when method="PR"
.
theta
, radiusmin
, reducmin
, radiusmax
,
radiusred
, reducred
, radiusexp
, reducexp
Parameters initialized to 0.99995
, 1
, 0.1
, 1e10
,
1/2
, 1/4
, 2
, 3/4
, when method="AS"
.
GNE.ceq
returns a list with components:
par
The best set of parameters found.
value
The value of the merit function.
counts
A two-element integer vector giving the number of calls to
H
and jacH
respectively.
iter
The outer iteration number.
code
The values returned are
1
Function criterion is near zero. Convergence of function values has been achieved.
2
x-values within tolerance. This means that the relative distance between two
consecutive x-values is smaller than xtol
.
3
No better point found. This means that the algorithm has stalled and cannot find an acceptable new point. This may or may not indicate acceptably small function values.
4
Iteration limit maxit
exceeded.
5
Jacobian is too ill-conditioned.
6
Jacobian is singular.
100
an error in the execution.
message
a string describing the termination code.
fvec
a vector with function values.
Christophe Dutang
J.E. Dennis and J.J. Moree (1977), Quasi-Newton methods, Motivation and Theory, SIAM review.
Monteiro, R. and Pang, J.-S. (1999), A Potential Reduction Newton Method for Constrained equations, SIAM Journal on Optimization 9(3), 729-754.
S. Bellavia, M. Macconi and B. Morini (2003), An affine scaling trust-region approach to bound-constrained nonlinear systems, Applied Numerical Mathematics 44, 257-280
A. Dreves, F. Facchinei, C. Kanzow and S. Sagratella (2011), On the solutions of the KKT conditions of generalized Nash equilibrium problems, SIAM Journal on Optimization 21(3), 1082-1108.
See GNE.fpeq
, GNE.minpb
and GNE.nseq
for other approaches; funCER
and
jacCER
for template functions of H
and Jac H
.
#-------------------------------------------------------------------------------
# (1) Example 5 of von Facchinei et al. (2007)
#-------------------------------------------------------------------------------
dimx <- c(1, 1)
#Gr_x_j O_i(x)
grobj <- function(x, i, j)
{
if(i == 1)
res <- c(2*(x[1]-1), 0)
if(i == 2)
res <- c(0, 2*(x[2]-1/2))
res[j]
}
#Gr_x_k Gr_x_j O_i(x)
heobj <- function(x, i, j, k)
2 * (i == j && j == k)
dimlam <- c(1, 1)
#constraint function g_i(x)
g <- function(x, i)
sum(x[1:2]) - 1
#Gr_x_j g_i(x)
grg <- function(x, i, j)
1
#Gr_x_k Gr_x_j g_i(x)
heg <- function(x, i, j, k)
0
x0 <- rep(0, sum(dimx))
z0 <- c(x0, 2, 2, max(10, 5-g(x0, 1) ), max(10, 5-g(x0, 2) ) )
#true value is (3/4, 1/4, 1/2, 1/2)
GNE.ceq(z0, dimx, dimlam, grobj=grobj, heobj=heobj,
constr=g, grconstr=grg, heconstr=heg, method="PR",
control=list(trace=0, maxit=10))
GNE.ceq(z0, dimx, dimlam, grobj=grobj, heobj=heobj,
constr=g, grconstr=grg, heconstr=heg, method="AS", global="pwldog",
xscalm="auto", control=list(trace=0, maxit=100))
#-------------------------------------------------------------------------------
# (2) Duopoly game of Krawczyk and Stanislav Uryasev (2000)
#-------------------------------------------------------------------------------
#constants
myarg <- list(d= 20, lambda= 4, rho= 1)
dimx <- c(1, 1)
#Gr_x_j O_i(x)
grobj <- function(x, i, j, arg)
{
res <- -arg$rho * x[i]
if(i == j)
res <- res + arg$d - arg$lambda - arg$rho*(x[1]+x[2])
-res
}
#Gr_x_k Gr_x_j O_i(x)
heobj <- function(x, i, j, k, arg)
arg$rho * (i == j) + arg$rho * (j == k)
dimlam <- c(1, 1)
#constraint function g_i(x)
g <- function(x, i)
-x[i]
#Gr_x_j g_i(x)
grg <- function(x, i, j)
-1*(i == j)
#Gr_x_k Gr_x_j g_i(x)
heg <- function(x, i, j, k)
0
#true value is (16/3, 16/3, 0, 0)
x0 <- rep(0, sum(dimx))
z0 <- c(x0, 2, 2, max(10, 5-g(x0, 1) ), max(10, 5-g(x0, 2) ) )
GNE.ceq(z0, dimx, dimlam, grobj=grobj, heobj=heobj, arggrobj=myarg,
argheobj=myarg, constr=g, grconstr=grg, heconstr=heg,
method="PR", control=list(trace=0, maxit=10))
GNE.ceq(z0, dimx, dimlam, grobj=grobj, heobj=heobj, arggrobj=myarg,
argheobj=myarg, constr=g, grconstr=grg, heconstr=heg,
method="AS", global="pwldog", xscalm="auto", control=list(trace=0, maxit=100))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.