Description Usage Arguments Value Methods (by class) Author(s) References See Also Examples
Computes the regularized predicted response \hat{y}_{δ_{lb},M}(x) and the mean squared error s^2_{δ_{lb},M}(x) for a new set of inputs using the fitted GP model.
The value of M
determines the number of iterations (or terms) in
approximating R^{-1} \approx R^{-1}_{δ_{lb},M}. The iterative use
of the nugget δ_{lb}, as outlined in Ranjan et al. (2011), is
used in calculating \hat{y}_{δ_{lb},M}(x) and
s^2_{δ_{lb},M}(x), where R_{δ,M}^{-1} = ∑_{t = 1}^{M}
δ^{t - 1}(R+δ I)^{-t}.
1 2 3 4 5 |
object |
a class |
xnew |
the ( |
M |
the number of iterations. See 'Details' |
... |
for compatibility with generic method |
Returns a list containing the predicted values (Y_hat
), the
mean squared errors of the predictions (MSE
), and a matrix
(complete_data
) containing xnew
, Y_hat
, and MSE
GP
: The predict
method
returns a list of elements Y_hat (fitted values),
Y (dependent variable), MSE (residuals), and
completed_data (the matrix of independent variables,
Y_hat, and MSE).
GP
: The fitted
method extracts the complete data.
Blake MacDonald, Hugh Chipman, Pritam Ranjan
Ranjan, P., Haynes, R., and Karsten, R. (2011). A Computationally Stable Approach to Gaussian Process Interpolation of Deterministic Computer Simulation Data, Technometrics, 53(4), 366 - 378.
GP_fit
for estimating the parameters of the GP model;
plot
for plotting the predicted and error surfaces.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 | ## 1D Example
n <- 5
d <- 1
computer_simulator <- function(x){
x <- 2*x+0.5
sin(10*pi*x)/(2*x) + (x-1)^4
}
set.seed(3)
library(lhs)
x <- maximinLHS(n,d)
y <- computer_simulator(x)
xvec <- seq(from = 0, to = 1, length.out = 10)
GPmodel <- GP_fit(x, y)
head(fitted(GPmodel))
lapply(predict(GPmodel, xvec), head)
## 1D Example 2
n <- 7
d <- 1
computer_simulator <- function(x) {
log(x+0.1)+sin(5*pi*x)
}
set.seed(1)
library(lhs)
x <- maximinLHS(n,d)
y <- computer_simulator(x)
xvec <- seq(from = 0,to = 1, length.out = 10)
GPmodel <- GP_fit(x, y)
head(fitted(GPmodel))
predict(GPmodel, xvec)
## 2D Example: GoldPrice Function
computer_simulator <- function(x) {
x1 <- 4*x[,1] - 2
x2 <- 4*x[,2] - 2
t1 <- 1 + (x1 + x2 + 1)^2*(19 - 14*x1 + 3*x1^2 - 14*x2 +
6*x1*x2 + 3*x2^2)
t2 <- 30 + (2*x1 -3*x2)^2*(18 - 32*x1 + 12*x1^2 + 48*x2 -
36*x1*x2 + 27*x2^2)
y <- t1*t2
return(y)
}
n <- 10
d <- 2
set.seed(1)
library(lhs)
x <- maximinLHS(n,d)
y <- computer_simulator(x)
GPmodel <- GP_fit(x,y)
# fitted values
head(fitted(GPmodel))
# new data
xvector <- seq(from = 0,to = 1, length.out = 10)
xdf <- expand.grid(x = xvector, y = xvector)
predict(GPmodel, xdf)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.