DIC: Deviance information criterion for a 'graf' model

Description Usage Arguments Details Value References See Also

Description

Calculates the deviance information criterion (DIC) and effective parameters for a graf model.

Usage

1
DIC(object)

Arguments

object

A graf object.

Details

Information criteria can be used to compare the goodness of fit of two models to the same dataset whilst accounting for model complexity. Commonly used methods such as AIC are difficult to implement for models such a GRaF where the number of parameters in the model is not obvious. Spiegelhalter et al. (2002) proposed the effective number of parameters for these models and the associated DIC for model comparison. Here we calculate DIC by numerical integration. If weights are included in the model fitting they are taken into account when calculating the DIC. DIC should therefore not be used to compare between models with different observation weights.

Value

A vector containing:

DIC

The deviance information criterion.

pD

The estimated number of effective parameters in the model.

References

Spiegelhalter, D.J.. Best, N.G., Carlin, B.P., van der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society, Series B, 64 (4): 583-639.

See Also

graf



Search within the GRaF package
Search all R packages, documentation and source code

Questions? Problems? Suggestions? or email at ian@mutexlabs.com.

Please suggest features or report bugs with the GitHub issue tracker.

All documentation is copyright its authors; we didn't write any of that.