Nothing
#'@title Value at risk (VAR) of a univariate HMM at time n+k1, n+k2, ...
#'
#'@description This function computes the VAR of a univariate HMM for multiple horizons, given observations up to time n
#'
#'@param U values (n x 1) between 0 and 1
#'@param ZI 1 if zero-inflated, 0 otherwise (default)
#'@param family distribution name; run the function distributions() for help
#'@param theta parameters; (r x p)
#'@param Q probability transition matrix for the regimes; (r x r)
#'@param eta vector of the estimated probability of each regime at time n; (1 x r)
#'@param k prediction times (may be a vector of integers).
#'
#'@return \item{var}{values at risk (1 x horizon)}
#'
#'
#'@examples
#'\donttest{
#'family = "gaussian"
#'theta = matrix(c(-1.5, 1.7, 1, 1),2,2)
#'Q = matrix(c(0.8, 0.3, 0.2, 0.7), 2, 2)
#'eta = c(0.96, 0.04)
#'U=c(0.01,0.05)
#' k=c(1,2,3,4,5)
#'ForecastHMMVAR(U, 0, family, theta, Q, eta=eta,k)
#'}
#'
#'
#'
#'@export
ForecastHMMVAR<-function(U, ZI=0, family, theta, Q, eta, k=1){
if(is.null(dim(Q))){
QQ0 = matrix(Q)
r = dim(QQ0)[1]
} else {
r = dim(Q)[2]
}
un=1+ZI;
n = length(U)
var = matrix(0, nrow=n, ncol=length(k))
var0 = matrix(0, nrow=n, ncol=r)
for (l in un:r){
var0[,l] = QUANTILE( U, theta[l,],family)
}
if(ZI==1) var0[,1] = 0
ub = apply(var0,1,max)
lb = apply(var0,1,min)-ZI
for (d in 1:length(k)){
for(i in 1:n)
{
p=U[i];
a = lb[i]
b = ub[i]
x0 = (a+b)/2;
for (j in 1:20){
u0 = ForecastHMMCdf(x0, ZI, family, theta, Q, eta, k[d])
if(u0<p){a = x0}else {b=x0}
x0 = (a+b)/2;
}
var[i,d] = x0
}
}
return(var)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.