Nothing
#'@title Predicted probabilities of regimes of a univariate HMM for a new observation
#'
#'@description This function computes the predicted probabilities of the regimes for a new observation of a univariate HMM, given observations up to time n
#'
#'@param ynew new observations
#'@param ZI 1 if zero-inflated, 0 otherwise (default)
#'@param family distribution name; run the function distributions() for help
#'@param theta parameters; (r x p)
#'@param Q probability transition matrix for the regimes; (r x r)
#'@param eta vector of the estimated probability of each regime at time n; (1 x r)
#'
#'
#'@return \item{etanew}{predicted probabilities of the regimes}
#'
#'@examples
#'family = "gaussian"
#'theta = matrix(c(-1.5, 1.7, 1, 1),2,2)
#'Q = matrix(c(0.8, 0.3, 0.2, 0.7), 2, 2)
#'eta = c(0.96, 0.04)
#'ForecastHMMeta(1.5, 0, family, theta, Q, eta)
#'
#'@export
ForecastHMMeta<-function(ynew, ZI=0, family, theta, Q, eta){
if(is.null(dim(Q))){
QQ0 = matrix(Q)
r = dim(QQ0)[1]
} else {
r = dim(Q)[2]
}
un = 1+ZI
etanew = matrix(0, nrow=length(ynew), ncol=r)
for (j in un:r){
for (l in 1:r){
etanew[,j] = etanew[,j] + eta[l] * Q[l, j]
}
etanew[,j] = etanew[,j] * PDF(family, ynew, theta[j,])
}
if(ZI==1)
{
for (l in 1:r){
etanew[,1] = etanew[,1] + eta[l] * Q[l, 1]
}
etanew[,1] = etanew[,1] * (ynew==0)
}
etanew = etanew / rowSums(etanew)
return(etanew)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.