Description Usage Arguments Value Author(s) References See Also Examples
View source: R/ggm.simulate.data.R
ggm.simulate.data
takes a positive definite partial correlation matrix and
generates an i.i.d. sample from the corresponding standard multinormal distribution
(with mean 0 and variance 1). If the input matrix pcor
is not positive definite
an error is thrown.
1 | ggm.simulate.data(sample.size, pcor)
|
sample.size |
sample size of simulated data set |
pcor |
partial correlation matrix |
A multinormal data matrix.
Juliane Sch\"afer and Korbinian Strimmer (https://strimmerlab.github.io).
Sch\"afer, J., and Strimmer, K. (2005). An empirical Bayes approach to inferring large-scale gene association networks. Bioinformatics 21:754-764.
ggm.simulate.pcor
, ggm.estimate.pcor
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | # load GeneNet library
library("GeneNet")
# generate random network with 40 nodes
# it contains 780=40*39/2 edges of which 5 percent (=39) are non-zero
true.pcor <- ggm.simulate.pcor(40)
# simulate data set with 40 observations
m.sim <- ggm.simulate.data(40, true.pcor)
# simple estimate of partial correlations
estimated.pcor <- cor2pcor( cor(m.sim) )
# comparison of estimated and true values
sum((true.pcor-estimated.pcor)^2)
# a slightly better estimate ...
estimated.pcor.2 <- ggm.estimate.pcor(m.sim)
sum((true.pcor-estimated.pcor.2)^2)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.