lambda_parameters | R Documentation |
Estimates the lambda parameters Λ and \bar{Λ} whose medians are used to find the best ML method.
lambda_parameters(BLP, GATES, proxy_CATE, membership)
BLP |
An object of class |
GATES |
An object of class |
proxy_CATE |
Proxy estimates of the CATE. |
membership |
A logical matrix that indicates the group membership of each observation in |
A list containing the estimates of Λ and \bar{Λ}, denoted lambda
and lambda.bar
, respectively.
Chernozhukov V., Demirer M., Duflo E., Fernández-Val I. (2020). “Generic Machine Learning Inference on Heterogenous Treatment Effects in Randomized Experiments.” arXiv preprint arXiv:1712.04802. URL: https://arxiv.org/abs/1712.04802.
## generate data set.seed(1) n <- 200 # number of observations p <- 5 # number of covariates D <- rbinom(n, 1, 0.5) # random treatment assignment Y <- runif(n) # outcome variable propensity_scores <- rep(0.5, n) # propensity scores proxy_BCA <- runif(n) # proxy BCA estimates proxy_CATE <- runif(n) # proxy CATE estimates membership <- quantile_group(proxy_CATE) # group membership ## perform BLP BLP <- BLP(Y, D, propensity_scores, proxy_BCA, proxy_CATE) ## perform GATES GATES <- GATES(Y, D, propensity_scores, proxy_BCA, proxy_CATE, membership) ## get estimates of the lambda parameters lambda_parameters(BLP, GATES, proxy_CATE, membership)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.