View source: R/GeoNeighbSelect.R
GeoNeighbSelect | R Documentation |
The procedure performs different pairwise composite likelihood estimation using user's specified spatial or spatiotemporal neighboords in the weight function. The neighbor minimizing the sum of the squared differences between the estimated semivariogram and the empirical semivariogram is selected. The procedure needs an object obtained using the GeoVariogram function.
GeoNeighbSelect(data, coordx, coordy=NULL,coordz=NULL, coordt=NULL, coordx_dyn=NULL,
copula=NULL,corrmodel=NULL, distance="Eucl",fixed=NULL,anisopars=NULL,
est.aniso=c(FALSE,FALSE), grid=FALSE, likelihood='Marginal',lower=NULL,
neighb=c(1,2,3,4,5),maxtime=Inf, memdist=TRUE,model='Gaussian',
n=1, ncores=NULL,optimizer='Nelder-Mead', parallel=FALSE,
bivariate=FALSE,radius=6371, start=NULL,type='Pairwise', upper=NULL,
weighted=FALSE,X=NULL,nosym=FALSE,spobj=NULL,spdata=NULL,vario=NULL)
data |
A |
coordx |
A numeric ( |
coordy |
A numeric vector giving 1-dimension of
spatial coordinates; Optional argument, the default is |
coordz |
A numeric vector giving 1-dimension of
spatial coordinates; Optional argument, the default is |
coordt |
A numeric vector assigning 1-dimension of
temporal coordinates. Optional argument, the default is |
coordx_dyn |
A list of |
copula |
String; the type of copula. It can be "Clayton" or "Gaussian" |
corrmodel |
String; the name of a correlation model, for the description see the Section Details. |
distance |
String; the name of the spatial distance. The default is |
fixed |
An optional named list giving the values of the parameters that will be considered as known values. The listed parameters for a given correlation function will be not estimated. |
anisopars |
A list of two elements: "angle" and "ratio" i.e. the anisotropy angle and the anisotropy ratio, respectively. |
est.aniso |
A bivariate logical vector providing which anisotropic parameters must be estimated. |
grid |
Logical; if |
likelihood |
String; the configuration of the composite
likelihood. |
lower |
An optional named list giving the values for the lower bound of the space parameter
when the optimizer is |
neighb |
Numeric; a vector of positive integers indicating the order of neighborhood in the weight function of composite likelihood (see Section Details in GeoFit). |
maxtime |
Numeric; an optional positive integer indicating the order of temporal neighborhood in the composite likelihood computation. |
memdist |
Logical; if |
model |
String; the type of random fields and therefore the densities associated to the likelihood
objects. |
n |
Numeric; number of trials in a binomial random fields; number of successes in a negative binomial random fields |
ncores |
Numeric; the number of cores involved in the parallelization |
optimizer |
String; the optimization algorithm
(see |
parallel |
Logical; if |
bivariate |
Logical; if |
radius |
Numeric; the radius of the sphere in the case of lon-lat coordinates. The default is 6371, the radius of the earth. |
start |
An optional named list with the initial values of the
parameters that are used by the numerical routines in maximization
procedure. |
type |
String; the type of the likelihood objects. If |
upper |
An optional named list giving the values for the upper bound
of the space parameter when the optimizer is or |
weighted |
Logical; if |
X |
Numeric; Matrix of spatio(temporal)covariates in the linear mean specification. |
nosym |
Logical; if TRUE simmetric weights are not considered. This allows a faster but less efficient CL estimation. |
spobj |
An object of class sp or spacetime |
spdata |
Character:The name of data in the sp or spacetime object |
vario |
An object of the class GeoVariogram obtained using the GeoVariogram function |
The procedure performs different pairwise composite likelihood estimation using user's specified spatial or spatiotemporal neighboords in the weight function. The neighbor minimizing the sum of the squared differences between the estimated semivariogram and the empirical semivariogram is selected. The procedure needs an object obtained using the GeoVariogram function.
Returns a list with information on the best selected neighbor.
Moreno Bevilacqua, moreno.bevilacqua89@gmail.com,https://sites.google.com/view/moreno-bevilacqua/home, Víctor Morales Oñate, victor.morales@uv.cl, https://sites.google.com/site/moralesonatevictor/, Christian", Caamaño-Carrillo, chcaaman@ubiobio.cl,https://www.researchgate.net/profile/Christian-Caamano
library(GeoModels)
######### spatial case
set.seed(32)
N=500 # number of location sites
x <- runif(N, 0, 1)
y <- runif(N, 0, 1)
coords <- cbind(x,y)
mean <- 0.2
# Set the covariance model's parameters:
corrmodel <- "Matern"
sill <- 1;nugget <- 0
scale <- 0.2/3;smooth=0.5
model="Gaussian"
param<-list(mean=mean,sill=sill,nugget=nugget,scale=scale,smooth=smooth)
# Simulation
data <- GeoSim(coordx=coords,corrmodel=corrmodel, param=param,model=model)$data
I=Inf
fixed<-list(nugget=nugget)
start<-list(mean=mean,scale=scale,smooth=smooth,sill=sill)
lower<-list(mean=-I,scale=0,sill=0,smooth=0)
upper<-list(mean=I,scale=I,sill=I,smooth=I)
vario = GeoVariogram(coordx=coords,data=data,maxdist=0.3,numbins=15)
neighb=c(1,2,3,4) ## trying different neighbs
selK <- GeoNeighbSelect(vario=vario,data=data,coordx=coords,corrmodel=corrmodel,
model=model,neighb=neighb,
likelihood="Conditional",type="Pairwise",parallel=FALSE,
optimizer="nlminb",lower=lower,upper=upper,
start=start,fixed=fixed)
print(selK$best_neighb) ## selected neighbor
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.