simulate_gaussian: Create ideal data for a generalized linear model.

Description Usage Arguments Details Value Examples

Description

Create ideal data for a generalized linear model.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
simulate_gaussian(
  N = 10000,
  link = "identity",
  weights = 1:3,
  xrange = 1,
  unrelated = 0,
  ancillary = 1
)

simulate_binomial(
  N = 10000,
  link = "logit",
  weights = c(0.1, 0.2),
  xrange = 1,
  unrelated = 0
)

simulate_gamma(
  N = 10000,
  link = "inverse",
  weights = 1:3,
  xrange = 1,
  unrelated = 0,
  ancillary = 0.05
)

simulate_poisson(
  N = 10000,
  link = "log",
  weights = c(0.5, 1),
  xrange = 1,
  unrelated = 0
)

simulate_inverse_gaussian(
  N = 10000,
  link = "1/mu^2",
  weights = 1:3,
  xrange = 1,
  unrelated = 0,
  ancillary = 0.3333
)

simulate_negative_binomial(
  N = 10000,
  link = "log",
  weights = c(0.5, 1),
  xrange = 1,
  unrelated = 0,
  ancillary = 1
)

simulate_tweedie(
  N = 10000,
  link = "log",
  weights = 0.02,
  xrange = 1,
  unrelated = 0,
  ancillary = 1.15
)

Arguments

N

Sample size. (Default: 10000)

link

Link function. See family for details.

weights

Betas in glm model.

xrange

range of x variables.

unrelated

Number of unrelated features to return. (Default: 0)

ancillary

Ancillary parameter for continuous families and negative binomial. See details.

Details

For many families, it is possible to pick weights that cause inverse link(X * weights) to be mathematically invalid. For example, the log link for binomial regression defines P(Y=1) as exp(X * weights) which can be above one. If this happens, the function will error with a helpful message.

The intercept in the underlying link(Y) = X * weights + intercept is always max(weights). In simulate_gaussian(link = "inverse", weights = 1:3), the model is (1/Y) = 1*X1 + 2*X2 + 3*X3 + 3.

links

The default link is the first link listed for each family.

ancillary parameter

Value

A tibble with a response variable and predictors.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
library(GlmSimulatoR)
library(ggplot2)
library(MASS)

# Do glm and lm estimate the same weights? Yes
set.seed(1)
simdata <- simulate_gaussian()
linearModel <- lm(Y ~ X1 + X2 + X3, data = simdata)
glmModel <- glm(Y ~ X1 + X2 + X3, data = simdata, family = gaussian(link = "identity"))
summary(linearModel)
summary(glmModel)
rm(linearModel, glmModel, simdata)

# If the link is not identity, will the response
# variable still be normal? Yes
set.seed(1)
simdata <- simulate_gaussian(N = 1000, link = "log", weights = c(.1, .2))

ggplot(simdata, aes(x = Y)) +
  geom_histogram(bins = 30)
rm(simdata)

# Is AIC lower for the correct link? For ten thousand data points, depends on seed!
set.seed(1)
simdata <- simulate_gaussian(N = 10000, link = "inverse", weights = 1)
glmCorrectLink <- glm(Y ~ X1, data = simdata, family = gaussian(link = "inverse"))
glmWrongLink <- glm(Y ~ X1, data = simdata, family = gaussian(link = "identity"))
summary(glmCorrectLink)$aic
summary(glmWrongLink)$aic
rm(simdata, glmCorrectLink, glmWrongLink)


# Does a stepwise search find the correct model for logistic regression? Yes
# 3 related variables. 3 unrelated variables.
set.seed(1)
simdata <- simulate_binomial(N = 10000, link = "logit", weights = c(.3, .4, .5), unrelated = 3)

scopeArg <- list(
  lower = Y ~ 1,
  upper = Y ~ X1 + X2 + X3 + Unrelated1 + Unrelated2 + Unrelated3
)

startingModel <- glm(Y ~ 1, data = simdata, family = binomial(link = "logit"))
glmModel <- stepAIC(startingModel, scopeArg)
summary(glmModel)
rm(simdata, scopeArg, startingModel, glmModel)

# When the resposne is a gamma distribution, what does a scatter plot between X and Y look like?
set.seed(1)
simdata <- simulate_gamma(weights = 1)
ggplot(simdata, aes(x = X1, y = Y)) +
  geom_point()
rm(simdata)

GlmSimulatoR documentation built on Nov. 5, 2021, 1:07 a.m.