gofcens | R Documentation |
Function gofcens
computes the Kolmogorov-Smirnov, Cramér-von Mises, and
Anderson-Darling statistics ans p-values for complete and right-censored data against
eight possible distributions using bootstrapping.
## Default S3 method:
gofcens(times, cens = rep(1, length(times)),
distr = c("exponential", "gumbel", "weibull", "normal",
"lognormal", "logistic", "loglogistic", "beta"),
betaLimits = c(0, 1), igumb = c(10, 10), BS = 999,
params0 = list(shape = NULL, shape2 = NULL, location = NULL,
scale = NULL),
tol = 1e-04, ...)
## S3 method for class 'formula'
gofcens(formula, data,...)
times |
Numeric vector of times until the event of interest. |
cens |
Status indicator (1, exact time; 0, right-censored time). If not provided, all times are assumed to be exact. |
distr |
A string specifying the name of the distribution to be studied.
The possible distributions are the exponential ( |
betaLimits |
Two-components vector with the lower and upper bounds of the Beta distribution. This argument is only required, if the beta distribution is considered. |
igumb |
Two-components vector with the initial values for the estimation of the Gumbel distribution parameters. |
BS |
Number of bootstrap samples. |
params0 |
List specifying the parameters of the theoretical distribution.
By default, parameters are set to |
tol |
Precision of survival times. |
formula |
A formula with a numeric vector as response (which assumes no censoring) or |
data |
Data frame for variables in |
... |
Additional arguments. |
All p-values are calculated via bootstrapping methods. For the three hypothesis tests, the same data generated with the bootstrapping method are used.
The precision of the survival times is important mainly in the data generation step of the bootstrap samples.
When dealing with complete data, we recommend the use of functions
ks.test
of the stats package and
cvm.test
and ad.test
of the goftest package.
gofcens
returns an object of class "gofcens"
.
An object of class "gofcens"
is a list containing the following components:
Distribution |
Null distribution. |
Hypothesis |
Parameters under the null hypothesis (if |
Test |
Vector containing the values of the Kolmogovor-Smirnov ( |
Estimates |
Vector with the maximum likelihood estimates of the parameters of the distribution under study. |
StdErrors |
Vector containing the estimated standard errors. |
aic |
The Akaike information criterion. |
bic |
The so-called BIC or SBC (Schwarz Bayesian criterion). |
BS |
The number of bootstrap samples used. |
If the amount of data is large, the execution time of the
function can be elevated. The parameter BS
can
limit the number of random censored samples generated and
reduce the execution time.
K. Langohr, M. Besalú, M. Francisco, A. Garcia, G. Gómez.
J. A. Koziol and S. B. Green. A Cramér-von Mises statistic for randomly censored data. In: Biometrika, 63 (3) (1976), 465-474.
A. N. Pettitt and M. A. Stephens. Modified Cramér-von Mises statistics for censored data. In: Biometrika, 63 (2) (1976), 291-298.
ks.test (Package stats
), cvm.test
(Package goftest
), and ad.test
(Package goftest
) for complete data, and KScens for the
Kolmogorov-Smirnov test for right-censored data, which returns the p-value.
## Not run:
# Complete data
set.seed(123)
gofcens(times = rweibull(100, 12, scale = 4), distr = "weibull", BS = 499)
print(gofcens(times = rweibull(100, 12, scale = 4), distr = "exponential"),
outp = "table", print.infoBoot = TRUE)
# Censored data
data(colon)
set.seed(123)
colonsamp <- colon[sample(nrow(colon), 300), ]
gofcens(Surv(time, status) ~ 1, colonsamp, distr = "normal")
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.