group_data_by_dims | R Documentation |
Groups extracted SL4 or HAR data based on specified dimension structures and priority rules. Supports automatic renaming, merging, subtotal filtering, and structured metadata handling.
group_data_by_dims(
patterns = NULL,
...,
priority,
rename_cols = NULL,
experiment_names = NULL,
subtotal_level = FALSE,
auto_rename = FALSE
)
patterns |
Character vector. Dimension patterns to extract. Use |
... |
One or more SL4 or HAR objects loaded using |
priority |
Named list. Specifies priority dimension elements ( |
rename_cols |
Named vector. Column name replacements ( |
experiment_names |
Character vector. Names assigned to each dataset. If |
subtotal_level |
Character or logical. Determines which decomposition levels to retain:
|
auto_rename |
Logical. If |
Groups extracted variables based on dimension elements.
Applies predefined priority rules to structure the data.
Allows automatic renaming of dimensions (auto_rename = TRUE
).
Supports merging of grouped data across multiple experiments.
Handles subtotal filtering (subtotal_level
), controlling whether "TOTAL"
or decomposed values are retained.
A structured list of grouped data:
A named list where each element corresponds to a dimension size group (e.g., "2D", "3D").
Each group contains dimension-grouped data based on priority rules.
If unmerged data exists, includes a report attribute detailing merge issues.
Pattawee Puangchit
get_data_by_dims
, get_data_by_var
, load_sl4x
, load_harx
# Import sample data
sl4_data1 <- load_sl4x(system.file("extdata", "TAR10.sl4", package = "HARplus"))
sl4_data2 <- load_sl4x(system.file("extdata", "SUBT10.sl4", package = "HARplus"))
# Case 1: Multiple priority levels (Sector then Region) with auto_rename
priority_list <- list(
"Sector" = c("COMM", "ACTS"),
"Region" = c("REG")
)
grouped_data_multiple <- group_data_by_dims(
patterns = "ALL",
sl4_data1,
priority = priority_list,
auto_rename = TRUE
)
# Case 2: Single priority (Region only) with auto_rename
priority_list <- list("Region" = c("REG"))
grouped_data_single <- group_data_by_dims(
patterns = "ALL",
sl4_data1, sl4_data2,
priority = priority_list,
auto_rename = TRUE
)
# Case 3: Multiple priorities without auto_rename
priority_list <- list(
"Sector" = c("COMM", "ACTS"),
"Region" = c("REG")
)
grouped_data_no_rename <- group_data_by_dims(
patterns = "ALL",
sl4_data1,
priority = priority_list,
auto_rename = FALSE
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.