HDMAADMM: ADMM for High-Dimensional Mediation Models

We use the Alternating Direction Method of Multipliers (ADMM) for parameter estimation in high-dimensional, single-modality mediation models. To improve the sensitivity and specificity of estimated mediation effects, we offer the sure independence screening (SIS) function for dimension reduction. The available penalty options include Lasso, Elastic Net, Pathway Lasso, and Network-constrained Penalty. The methods employed in the package are based on Boyd, S., Parikh, N., Chu, E., Peleato, B., & Eckstein, J. (2011). <doi:10.1561/2200000016>, Fan, J., & Lv, J. (2008) <doi:10.1111/j.1467-9868.2008.00674.x>, Li, C., & Li, H. (2008) <doi:10.1093/bioinformatics/btn081>, Tibshirani, R. (1996) <doi:10.1111/j.2517-6161.1996.tb02080.x>, Zhao, Y., & Luo, X. (2022) <doi:10.4310/21-sii673>, and Zou, H., & Hastie, T. (2005) <doi:10.1111/j.1467-9868.2005.00503.x>.

Package details

AuthorPei-Shan Yen [aut, cre] (<https://orcid.org/0000-0001-7386-0552>), Ching-Chuan Chen [aut] (<https://orcid.org/0009-0007-8273-3206>)
MaintainerPei-Shan Yen <peishan0824@gmail.com>
LicenseMIT + file LICENSE
Version0.0.1
URL https://github.com/psyen0824/HDMAADMM
Package repositoryView on CRAN
Installation Install the latest version of this package by entering the following in R:
install.packages("HDMAADMM")

Try the HDMAADMM package in your browser

Any scripts or data that you put into this service are public.

HDMAADMM documentation built on May 29, 2024, 12:08 p.m.