trans.dens | R Documentation |
Computes the value of the 'g' density at a given point and, optionally, returns the backtransformed point and the model to which the point belongs.
trans.dens(y, ldens.list, which.models, ..., back.transform=F) trans.up(x, ldens.list, which.models, ...) trans2(y, ldens.list, k, ...) transUp2(y, ldens.list, k, ...) transBack2(y, ldens.list, k, ...)
y |
Vector or matrix of points (by row) at which the density of the absolutely continuous auxiliary distribution has to be evaluated |
x |
Vector or matrix of points corresponding to |
ldens.list |
List of densities (of submodels) |
which.models |
List of integers, in increasing order,
giving the number of components to be dropped when evaluating
the density in |
back.transform |
Logical that determines the output |
k |
Difference between the dimension of the larger model and the dimension of the smaller model |
... |
Other arguments passed to the functions in |
See the reference for details. The functions with the 2 in the name operate on pairs of models only.
If back.transform=F
, trans.dens
returns the density
of the absolutely continuous auxiliary distribution evaluated
at the point(s) y
.\
If back.transform=T
, trans.dens
returns in addition
the point x
corresponding to y
in the original space
and the index of the subspace to which x
belongs.\
trans.up
is a (stochastic) right inverse of the correspondence
between y
and x
Giovanni Petris GPetris@uark.edu, Luca Tardella
Petris \& Tardella, A geometric approach to transdimensional Markov chain Monte Carlo. The Canadian Journal of Statistics, vol.31, n.4, (2003).
#### ==> Warning: running the examples may take a few minutes! <== #### ### Generate a sample from a mixture of 0,1,2-dim standard normals ldens.list <- list(f0 = function(x) sum(dnorm(x,log=TRUE)), f1 = function(x) dnorm(x,log=TRUE), f2 = function() 0) trans.mix <- function(y) { trans.dens(y, ldens.list=ldens.list, which.models=0:2) } trans.rmix <- arms(c(0,0), trans.mix, function(x) crossprod(x)<1e4, 500) rmix <- trans.dens(y=trans.rmix, ldens.list=ldens.list, which.models=0:2, back.transform = TRUE) table(rmix[,2])/nrow(rmix) # should be about equally distributed plot(trans.rmix,col=rmix[,2]+3,asp=1, xlab="y.1", ylab="y.2", main="A sample from the auxiliary continuous distribution") x <- rmix[,-(1:2)] plot(x, col=rmix[,2]+3, asp=1, main="The sample transformed back to the original space") ### trans.up as a right inverse of trans.dens set.seed(6324) y <- trans.up(x, ldens.list, 0:2) stopifnot(all.equal(x, trans.dens(y, ldens.list, 0:2, back.transform=TRUE)[,-(1:2)])) ### More trans.up z <- trans.up(matrix(0,1000,2), ldens.list, 0:2) plot(z,asp=1,col=5) # should look uniform in a circle corresponding to model 2 z <- trans.up(cbind(runif(1000,-3,3),0), ldens.list, 0:2) plot(z,asp=1,col=4) # should look uniform in a region corresponding to model 1 ### trans2, transBack2 ldens.list <- list(f0 = function(x) sum(dnorm(x,log=TRUE)), f1 = function(x) dnorm(x,log=TRUE)) trans.mix <- function(y) { trans2(y, ldens.list=ldens.list, k=1)[-2] } trans.rmix <- arms(c(0,0), trans.mix, function(x) crossprod(x)<1e2, 1000) rmix <- transBack2(y=trans.rmix, ldens.list=ldens.list, k=1) table(rmix[,2]==0)/nrow(rmix) # should be about equally distributed plot(trans.rmix,col=(rmix[,2]==0)+3,asp=1, xlab="y.1", ylab="y.2", main="A sample from the auxiliary continuous distribution") plot(rmix, col=(rmix[,2]==0)+3, asp=1, main="The sample transformed back to the original space") ### trunsUp2 z <- t(sapply(1:1000, function(i) transUp2(c(-2+0.004*i,0), ldens.list, 1))) plot(z,asp=1,col=2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.