Nothing
## ---- include = FALSE---------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----eval=FALSE---------------------------------------------------------------
# install.packages("HTRX")
## ----setup--------------------------------------------------------------------
library(HTRX)
## -----------------------------------------------------------------------------
## load the data
data(example_data_nosnp)
data(example_hap1)
data(example_hap2)
## -----------------------------------------------------------------------------
##
example_data_nosnp[41:43,1:6]
## -----------------------------------------------------------------------------
head(example_hap1,3)
## -----------------------------------------------------------------------------
## create haplotype data removing haplotypes rarer than 1%
HTRX_matrix_rmrare = make_htrx(hap1=example_hap1[1:2000,1:4],
hap2=example_hap2[1:2000,1:4],
rareremove=TRUE,rare_threshold=0.01)
## display the created haplotype data
HTRX_matrix_rmrare[1:3,47:50]
## create haplotype data without removing any haplotypes
HTRX_matrix_allhaps = make_htrx(hap1=example_hap1[1:2000,1:4],
hap2=example_hap2[1:2000,1:4])
## create haplotype data while at maximum 3 SNPs can interact
HTRX_matrix_3snphaps = make_htrx(hap1=example_hap1[1:2000,1:4],
hap2=example_hap2[1:2000,1:4],max_int=3)
## compare the numbers of haplotypes created by setting different 'mat_int'
cat(ncol(HTRX_matrix_rmrare),
ncol(HTRX_matrix_allhaps),
ncol(HTRX_matrix_3snphaps))
## ----warning=FALSE------------------------------------------------------------
## selecting the best haplotype model using "AIC" from all the haplotypes
CV_results_nocovar <- do_cv(data_nosnp=example_data_nosnp[1:2000,1,drop=FALSE],
featuredata=HTRX_matrix_rmrare,
sim_times=2,featurecap=4,usebinary=1,
method="simple",criteria="BIC",gain=FALSE)
cat('The selected features', as.character(CV_results_nocovar[[2]]),
'explains \n',mean(CV_results_nocovar[[1]])*100,
'% average out-of-sample variance')
## ----warning=FALSE------------------------------------------------------------
## selecting the best haplotype model using "BIC" from all the haplotypes
## here we include the sex and age as fixed covariates
CV_results_withcovar <- do_cv(data_nosnp=example_data_nosnp[1:2000,1:3],
featuredata=HTRX_matrix_rmrare,
sim_times=2,featurecap=8,usebinary=1,
method="stratified",criteria="AIC",gain=TRUE)
cat('The selected features', as.character(CV_results_withcovar[[2]]),
'explains \n', mean(CV_results_withcovar[[1]])*100,
'% extra average out-of-sample variance')
## ----warning=FALSE------------------------------------------------------------
## selecting the best haplotype model using "BIC"
## we include all the 8 SNPs, but specify at most 4 SNPs can interact
## we also include the sex and age as fixed covariates
cumu_CV_results <- do_cumulative_htrx(data_nosnp=example_data_nosnp[1:2000,1:3],
hap1=example_hap1[1:2000,],
hap2=example_hap2[1:2000,],
sim_times=1,featurecap=8,usebinary=1,
method="stratified",criteria="AIC",
gain=TRUE,max_int=4)
cat('The selected features', as.character(cumu_CV_results[[2]]),
'explains \n',mean(cumu_CV_results[[1]])*100,
'% average out-of-sample variance')
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.