R/plotModelDiagnostics.R

Defines functions plotModelDiagnostics

Documented in plotModelDiagnostics

#' @name plotModelDiagnostics
#' @title Make the diagnostic plots for hierarchical voronoi tessellations
#' @description This is the main function that generates diagnostic plots for 
#' hierarchical voronoi tessellations models and scoring. 
#' @param model_obj List. A list obtained from the trainHVT
#' function or scoreHVT function
#' @returns For trainHVT, Minimum Intra-DataPoint Distance Plot, Minimum Intra-Centroid Distance Plot
#' Mean Absolute Deviation Plot, Distribution of Number of Observations in Cells, for Training Data and
#' Mean Absolute Deviation Plot for Validation Data are plotted.
#' For scoreHVT Mean Absolute Deviation Plot for Training Data and Validation Data are plotted
#' @author Shubhra Prakash <shubhra.prakash@@mu-sigma.com>
#' @seealso \code{\link{plotHVT}}
#' @keywords Diagnostics_or_Validation
#' @importFrom magrittr %>%
#' @import ggplot2 
#' @examples
#' data("EuStockMarkets")
#' hvt.results <- trainHVT(EuStockMarkets, n_cells = 60, depth = 1, quant.err = 0.1, 
#'                        distance_metric = "L1_Norm", error_metric = "max",
#'                        normalize = TRUE, quant_method="kmeans", diagnose = TRUE, 
#'                        hvt_validation = TRUE)
#' plotModelDiagnostics(hvt.results)
#' @export plotModelDiagnostics


plotModelDiagnostics <-
  function(model_obj) {
    if (!requireNamespace("patchwork", quietly = TRUE)) {
      stop("Package 'patchwork' is required but not installed.")
    } 


    if (model_obj[["model_info"]][["type"]] == "hvt_model") {
      p1 <- model_obj[[4]]$datapoint_plot + ggplot2::ggtitle("Minimum Intra-DataPoint Distance Plot: Train Data")
      p2 <- model_obj[[4]]$cent_plot + ggplot2::ggtitle("Minimum Intra-Centroid Distance Plot: HVT Model | Train Data")
      p3 <- model_obj[[4]]$mad_plot_train + ggplot2::ggtitle("Mean Absolute Deviation Plot: Calibration: HVT Model | Train Data")
      p4 <- model_obj[[4]]$number_plot + ggplot2::ggtitle("Distribution of Number of Observations in Cells: HVT Model | Train Data")
      p5 <- model_obj[[4]]$singleton_piechart
      if (model_obj[["model_info"]][["input_parameters"]][["hvt_validation"]]) {
        p6 <- model_obj[[5]][["mad_plot"]] + ggplot2::ggtitle("Mean Absolute Deviation Plot:Validation")

        plotDiag <- (p3 / (p1 | p2) / (p4 | p5) / p6)
      } else {
        plotDiag <- (p3 / (p1 | p2) / (p4 | p5))
      }
    } else if (model_obj[["model_info"]][["type"]] == "hvt_prediction") {
      mtrain <- model_obj[["model_mad_plots"]][["mtrain"]] + ggplot2::ggtitle("Mean Absolute Deviation Plot: Calibration on Train Data")
      mtest <- model_obj[["model_mad_plots"]][["mtest"]] + ggplot2::ggtitle("Mean Absolute Deviation Plot:Validation")
      mpred <- madPlot(model_obj) + ggplot2::ggtitle("Mean Absolute Deviation Plot:Test Data")
      plotDiag <- mtrain / mtest / mpred
    }
    return(plotDiag)
  }

Try the HVT package in your browser

Any scripts or data that you put into this service are public.

HVT documentation built on April 3, 2025, 8:45 p.m.