Description Usage Arguments Details Value See Also Examples
Calculates the log-likelihood multiplied by negative one. It is in a format that can be used with the functions nlm
and optim
, providing an alternative to the BaumWelch
algorithm for maximum likelihood parameter estimation.
1 | neglogLik(params, object, pmap)
|
params |
a vector of revised parameter values. |
object |
an object of class |
pmap |
a user provided function mapping the revised (or restricted) parameter values |
This function is in a format that can be used with the two functions nlm
and optim
(see Examples below). This provides alternative methods of estimating the maximum likelihood parameter values, to that of the EM algorithm provided by BaumWelch
, including Newton type methods and grid searches. It can also be used to restrict estimation to a subset of parameters.
The EM algorithm is relatively stable when starting from poor initial values but convergence is very slow in close proximity to the solution. Newton type methods are very sensitive to initial conditions but converge much more quickly in close proximity to the solution. This suggests initially using the EM algorithm and then switching to Newton type methods (see Examples below).
The maximisation of the model likelihood function can be restricted to be over a subset of the model parameters. Other parameters will then be fixed at the values stored in the model object
. Let Theta denote the model parameter space, and let Psi denote the parameter sub-space (Psi subseteq Theta) over which the likelihood function is to be maximised. The argument params
contains values in Psi, and pmap
is assigned a function that maps these values into the model parameter space Theta. See “Examples” below.
The mapping function assigned to pmap
can also be made to impose restrictions on the domain of the parameter space Psi so that the minimiser cannot jump to values such that Psi notsubseteq Theta. For example, if a particular parameter must be positive, one can work with a transformed parameter that can take any value on the real line, with the model parameter being the exponential of this transformed parameter. Similarly a modified logit like transform can be used to ensure that parameter values remain within a fixed interval with finite boundaries. Examples of these situations can be found in the “Examples” below.
Some functions are provided in the topic Transform-Parameters
that may provide useful components within the user provided function assigned to pmap
.
Value of the log-likelihood times negative one.
nlm
, optim
, Transform-Parameters
, BaumWelch
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 | # Example where the Markov chain is assumed to be stationary
Pi <- matrix(c(0.8, 0.1, 0.1,
0.1, 0.6, 0.3,
0.2, 0.3, 0.5),
byrow=TRUE, nrow=3)
# start simulation in state 2
delta <- c(0, 1, 0)
x <- dthmm(NULL, Pi, delta, "exp", list(rate=c(5, 2, 0.2)), nonstat=FALSE)
x <- simulate(x, nsim=5000, seed=5)
# Approximate solution using BaumWelch
x1 <- BaumWelch(x, control=bwcontrol(maxiter=10, tol=1e-5))
# Exact solution using nlm
allmap <- function(y, p){
# maps vector back to delta, Pi and rate
m <- sqrt(length(p))
y$Pi <- vector2Pi(p[1:(m*(m-1))])
y$pm$rate <- exp(p[(m^2-m+1):(m^2)])
y$delta <- compdelta(Pi)
return(y)
}
p <- c(Pi2vector(x$Pi), log(x$pm$rate))
# Increase iterlim below to achieve convergence
# Has been restricted to minimise time of package checks
z <- nlm(neglogLik, p, object=x, pmap=allmap,
print.level=2, gradtol=0.000001, iterlim=2)
x2 <- allmap(x, z$estimate)
# compare parameter estimates
print(summary(x))
print(summary(x1))
print(summary(x2))
#--------------------------------------------------------
# Estimate only the off diagonal elements in the matrix Pi
# Hold all others as in the simulation
# This function maps the changeable parameters into the
# dthmm object - done within the function neglogLik
# The logit-like transform removes boundaries
Pi <- matrix(c(0.8, 0.1, 0.1,
0.1, 0.6, 0.3,
0.2, 0.3, 0.5),
byrow=TRUE, nrow=3)
delta <- c(0, 1, 0)
x <- dthmm(NULL, Pi, delta, "exp", list(rate=c(5, 3, 1)))
x <- simulate(x, nsim=5000, seed=5)
offdiagmap <- function(y, p){
# rows must sum to one
invlogit <- function(eta)
exp(eta)/(1+exp(eta))
y$Pi[1,2] <- (1-y$Pi[1,1])*invlogit(p[1])
y$Pi[1,3] <- 1-y$Pi[1,1]-y$Pi[1,2]
y$Pi[2,1] <- (1-y$Pi[2,2])*invlogit(p[2])
y$Pi[2,3] <- 1-y$Pi[2,1]-y$Pi[2,2]
y$Pi[3,1] <- (1-y$Pi[3,3])*invlogit(p[3])
y$Pi[3,2] <- 1-y$Pi[3,1]-y$Pi[3,3]
return(y)
}
z <- nlm(neglogLik, c(0, 0, 0), object=x, pmap=offdiagmap,
print.level=2, gradtol=0.000001)
# x1 contains revised parameter estimates
x1 <- offdiagmap(x, z$estimate)
# print revised values of Pi
print(x1$Pi)
# print log-likelihood using original and revised values
print(logLik(x))
print(logLik(x1))
#--------------------------------------------------------
# Fully estimate both Q and lambda for an MMPP Process
Q <- matrix(c(-8, 5, 3,
1, -4, 3,
2, 5, -7),
byrow=TRUE, nrow=3)/25
lambda <- c(5, 3, 1)
delta <- c(0, 1, 0)
# simulate some data
x <- mmpp(NULL, Q, delta, lambda)
x <- simulate(x, nsim=5000, seed=5)
allmap <- function(y, p){
# maps vector back to Pi and rate
m <- sqrt(length(p))
y$Q <- vector2Q(p[1:(m*(m-1))])
y$lambda <- exp(p[(m^2-m+1):(m^2)])
return(y)
}
# Start by using the EM algorithm
x1 <- BaumWelch(x, control=bwcontrol(maxiter=10, tol=0.01))
# use above as initial values for the nlm function
# map parameters to a single vector, fixed delta
p <- c(Q2vector(x1$Q), log(x1$lambda))
# Complete estimation using nlm
# Increase iterlim below to achieve convergence
# Has been restricted to minimise time of package checks
z <- nlm(neglogLik, p, object=x, pmap=allmap,
print.level=2, gradtol=0.000001, iterlim=5)
# mmpp object with estimated parameter values from nlm
x2 <- allmap(x, z$estimate)
# compare log-likelihoods
print(logLik(x))
print(logLik(x1))
print(logLik(x2))
# print final parameter estimates
print(summary(x2))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.