covAxis: One step Tyler Shape Matrix

covAxisR Documentation

One step Tyler Shape Matrix

Description

This matrix can be used to get the principal axes from ics, which is then known as principal axis analysis.

Usage

covAxis(X, na.action = na.fail)

Arguments

X

numeric data matrix or dataframe.

na.action

a function which indicates what should happen when the data contain 'NA's. Default is to fail.

Details

The covAxis matrix V is a given for a n \times p data matrix X as

p \ ave_{i}\{[(x_{i}-\bar{x})S^{-1}(x_{i}-\bar{x})']^{-1}(x_{i}-\bar{x})'(x_{i}-\bar{x})\},

where \bar{x} is the mean vector and S the regular covariance matrix.

covAxis can be used to perform a Prinzipal Axis Analysis (Critchley et al. 2006) using the function ics. In that case, for a centered data matrix X, covAxis can be used as S2 in ics, where S1 should be in that case the regular covariance matrix.

Value

A matrix containing the estimated one step Tyler shape matrix.

Author(s)

Klaus Nordhausen

References

Critchley , F., Pires, A. and Amado, C. (2006), Principal axis analysis, Technical Report, 06/14, The Open University Milton Keynes.

Tyler, D.E., Critchley, F., D?mbgen, L. and Oja, H. (2009), Invariant co-ordinate selecetion, Journal of the Royal Statistical Society,Series B, 71, 549–592. <doi:10.1111/j.1467-9868.2009.00706.x>.

See Also

ics

Examples


data(iris)
iris.centered <- sweep(iris[,1:4], 2, colMeans(iris[,1:4]), "-")
iris.paa <- ics(iris.centered, cov, covAxis, stdKurt = FALSE)
summary(iris.paa)
plot(iris.paa, col=as.numeric(iris[,5]))
mean(iris.paa@gKurt)
emp.align <- iris.paa@gKurt
emp.align

screeplot(iris.paa)
abline(h = 1)




ICS documentation built on Sept. 21, 2023, 9:07 a.m.