normal_crit | R Documentation |
Identifies invariant coordinates that are non normal using univariate
normality tests as in the comp.norm.test
function from the
ICSOutlier
package, with the difference that both the
first and last few components are investigated.
normal_crit(object, ...)
## S3 method for class 'ICS'
normal_crit(
object,
level = 0.05,
test = c("agostino.test", "jarque.test", "anscombe.test", "bonett.test",
"shapiro.test"),
max_select = NULL,
select_only = FALSE,
...
)
## Default S3 method:
normal_crit(
object,
level = 0.05,
test = c("agostino.test", "jarque.test", "anscombe.test", "bonett.test",
"shapiro.test"),
max_select = NULL,
select_only = FALSE,
gen_kurtosis = NULL,
...
)
object |
object of class |
... |
additional arguments are currently ignored. |
level |
the initial level used to make a decision based on the test p-values. See details. Default is 0.05. |
test |
name of the normality test to be used. Possibilities are
|
max_select |
the maximal number of components to select. |
select_only |
boolean. If |
gen_kurtosis |
vector of generalized kurtosis values. |
The procedure sequentially tests the first and the last components until
finding no additional components as non-normal. The quantile levels are
adjusted for multiple testing by taking the level as level
/j for the
jth component.
If select_only
is TRUE
a vector of the names of the invariant
components or variables to select. If FALSE
an object of class "ICS_crit"
is returned with the following objects:
crit
: the name of the criterion "normal".
level
: the level of the test.
max_select
: the maximal number of components to select.
test
: name of the normality test to be used.
pvalues
: the p-values of the tests.
adjusted_levels
: the adjusted levels.
select
: the names of the invariant components or variables to select.
gen_kurtosis
: the vector of generalized kurtosis values in case of
ICS
object.
Andreas Alfons, Aurore Archimbaud, Klaus Nordhausen and Anne Ruiz-Gazen
Alfons, A., Archimbaud, A., Nordhausen, K., & Ruiz-Gazen, A. (2022). Tandem clustering with invariant coordinate selection. arXiv preprint arXiv:2212.06108..
Archimbaud, A., Nordhausen, K., and Ruiz-Gazen, A. (2018). ICSOutlier: Unsupervised Outlier Detection for Low-Dimensional Contamination Structure, The RJournal, Vol. 10(1):234–250. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.32614/RJ-2018-034")}
Archimbaud, A., Nordhausen, K., and Ruiz-Gazen, A. (2016). ICSOutlier: Outlier Detection Using Invariant Coordinate Selection. R package version 0.3-0
med_crit()
, var_crit()
, discriminatory_crit()
,
jarque.test()
, anscombe.test()
,
bonett.test()
, agostino.test()
, stats::shapiro.test()
.
X <- iris[,-5]
out <- ICS(X)
normal_crit(out, level = 0.1, select_only = FALSE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.