Nothing
## ---- include = FALSE---------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## -----------------------------------------------------------------------------
library("ILSE")
## ----eval = FALSE-------------------------------------------------------------
# set.seed(1)
# n <- 100
# p <- 6
# X <- MASS::mvrnorm(n, rep(0, p), cor.mat(p, rho=0.5))
# beta0 <- rep(c(1,-1), times=3)
# Y <- -2+ X %*% beta0 + rnorm(n, sd=1)
## ----eval = FALSE-------------------------------------------------------------
# ilse1 <- ilse(Y~X)
# print(ilse1)
## ----eval = FALSE-------------------------------------------------------------
# dat <- data.frame(Y=Y, X=X)
# ilse1 <- ilse(Y~., data=dat)
# print(ilse1)
# Coef(ilse1) # access the coefficients
# Fitted.values(ilse1)[1:5]
# Residuals(ilse1)[1:5]
#
## ----eval = FALSE-------------------------------------------------------------
# s1 <- summary(ilse1)
# s1
## ----eval = FALSE-------------------------------------------------------------
# mis_rate <- 0.3
# set.seed(1)
# na_id <- sample(1:(n*p), n*p*mis_rate)
# Xmis <- X
# Xmis[na_id] <- NA
# ncomp <- sum(complete.cases(Xmis))
# message("Number of complete cases is ", ncomp, '\n')
## ----eval = FALSE-------------------------------------------------------------
# lm1 <- lm(Y~Xmis)
# s_cc <- summary.lm(lm1)
# s_cc
## ----eval = FALSE-------------------------------------------------------------
# ilse2 <- ilse(Y~Xmis+0, data=NULL, verbose=T)
# print(ilse2)
## ----eval = FALSE-------------------------------------------------------------
# ilse2 <- ilse(Y~Xmis, data=NULL, verbose=T)
# print(ilse2)
## ----eval = FALSE-------------------------------------------------------------
# s2 <- summary(ilse2, Nbt=20)
# s2
## ----eval = FALSE-------------------------------------------------------------
# fimllm <- fimlreg(Y~Xmis)
# print(fimllm)
#
## ----eval = FALSE-------------------------------------------------------------
# s_fiml <- summary(fimllm, Nbt=20)
# s_fiml
## ----eval = FALSE-------------------------------------------------------------
# pMat <- cbind(CC=s_cc$coefficients[,4], ILSE=s2[,4], FIML=s_fiml[,4])
# library(ggplot2)
# df1 <- data.frame(Pval= as.vector(pMat[-1,]),
# Method =factor(rep(c('CC', "ILSE", "FIML"),each=p)),
# covariate= factor(rep(paste0("X", 1:p), times=3)))
# ggplot(data=df1, aes(x=covariate, y=Pval, fill=Method)) + geom_bar(position = "dodge", stat="identity",width = 0.5) + geom_hline(yintercept = 0.05, color='red') + geom_hline(yintercept = 0.1, color='blue')
## ----eval = FALSE-------------------------------------------------------------
# dat <- data.frame(Y=Y, X=Xmis)
# dat$Sex <- factor(rep(c('male', 'female'), times=n/2))
# dat$Sex[sample(1:n, n*mis_rate)] <- NA
# ilse1 <- ilse(Y~., data=dat, verbose = T)
## ----eval = FALSE-------------------------------------------------------------
# s3 <- summary(ilse1, Nbt=40)
# s3
## ----eval = FALSE-------------------------------------------------------------
# set.seed(10)
# n <- 100
# p <- 6
# X <- MASS::mvrnorm(n, rep(0, p), cor.mat(p, rho=0.5))
# beta0 <- rep(c(1,0), times=3)
# Y <- -2+ X %*% beta0 + rnorm(n, sd=1)
# message("The true regression coefficients are: ", paste0(beta0, ' '))
## ----eval = FALSE-------------------------------------------------------------
# mis_rate <- 0.3
# set.seed(1)
# na_id <- sample(1:(n*p), n*p*mis_rate)
# Xmis <- X
# Xmis[na_id] <- NA
## ----eval = FALSE-------------------------------------------------------------
# dat <- data.frame(Y=Y, X=Xmis)
# ilse1 <- ilse(Y~., data=dat, verbose = T)
# s3 <- summary(ilse1)
# s3
## ----eval = FALSE-------------------------------------------------------------
# lm1 <- lm(Y~Xmis)
# s_cc <- summary.lm(lm1)
# fimllm <- fimlreg(Y~Xmis)
# s_fiml <- summary(fimllm)
## ----eval = FALSE-------------------------------------------------------------
# library(ggthemes)
# pMat <- cbind(CC=s_cc$coefficients[,4], ILSE=s3[,4], FIML=s_fiml[,4])
# df1 <- data.frame(Pval= as.vector(pMat[-1,]),
# Method =factor(rep(c('CC', "ILSE", "FIML"),each=p)),
# covariate= factor(rep(paste0("X", 1:p), times=3)))
# ggplot(data=df1, aes(x=covariate, y=Pval, fill=Method)) + geom_bar(position = "dodge", stat="identity",width = 0.5) + geom_hline(yintercept = 0.05, color='red') + scale_fill_economist()
## ----eval = FALSE-------------------------------------------------------------
#
# # generate data from linear model
# set.seed(10)
# n <- 100
# p <- 6
# X <- MASS::mvrnorm(n, rep(0, p), cor.mat(p, rho=0.5))
# beta0 <- rep(c(1,-1), times=3)
# Y <- -2+ X %*% beta0 + rnorm(n, sd=1)
#
# # generate missing values
# mis_rate <- 0.8
# set.seed(1)
# na_id <- sample(1:(n*p), n*p*mis_rate)
# Xmis <- X
# Xmis[na_id] <- NA
# # retain 4 complete cases.
# Xmis[1:4,] <- X[1:4, ]
# sum(complete.cases(Xmis))
## ----eval = FALSE-------------------------------------------------------------
# lm1 <- lm(Y~Xmis)
# summary.lm(lm1)
## ----eval = FALSE-------------------------------------------------------------
# ilse2 <- ilse(Y~Xmis, verbose = T)
# s2 <- summary(ilse2)
# s2
## ----eval = FALSE-------------------------------------------------------------
# n <- 1000
# p <- 50
# X <- MASS::mvrnorm(n, rep(0, p), cor.mat(p, rho=0.5))
# beta0 <- rep(c(1,-1), length=p)
# Y <- -2+ X %*% beta0 + rnorm(n, sd=1)
#
# mis_rate <- 0.3
# set.seed(1)
# na_id <- sample(1:(n*p), n*p*mis_rate)
# Xmis <- X
# Xmis[na_id] <- NA
#
#
# Xmis[1:10,] <- X[1:10,]
# lm1 <- lm(Y~Xmis)
# lm1
# system.time(ilse2 <- ilse(Y~Xmis, data=NULL, verbose=T))
## -----------------------------------------------------------------------------
sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.