inst/doc/Guildlines_and_application_examples.R

## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>"
)

## ----echo = T, eval = F-------------------------------------------------------
#  devtools::install_github("WeichengSun/ILSM")

## ----echo=F,eval = T,out.width = "70%",fig.align = 'center'-------------------
knitr::include_graphics("../man/figure/trinet_and_example.png")

## ----echo=T, eval = F, out.width = "100%"-------------------------------------
#  library(ILSM);library(igraph)
#  #Load the 'igraph' data
#  data(PPH_Coltparkmeadow)
#  #Or read two matrices and transform them to an 'igraph'. .
#  P_mat<-as.matrix(read.csv("../data/PP.csv",row.names = 1,check.names=FALSE))
#  Q_mat<-as.matrix(read.csv("../data/HP.csv",row.names = 1,check.names=FALSE))
#  PPH_Coltparkmeadow<-trigraph_from_mat(P_mat,Q_mat,weighted = F)
#  
#  #Generating random weights to showcase weighted metrics
#  E(PPH_Coltparkmeadow)$weight<-runif(length(E(PPH_Coltparkmeadow)),0.1,1.5)
#  
#  #proportion of connector nodes
#  poc(PPH_Coltparkmeadow)
#  poc(P_mat,Q_mat)
#  #correlation of interaction degree
#  coid(PPH_Coltparkmeadow)
#  coid(PPH_Coltparkmeadow,weighted=T)
#  #correlation of interaction similarity
#  cois(PPH_Coltparkmeadow)
#  cois(PPH_Coltparkmeadow,weighted=T)
#  #participation coefficient
#  pc(PPH_Coltparkmeadow)
#  pc(PPH_Coltparkmeadow,weighted=T)
#  #proportion of connector nodes in shared node hubs
#  hc(PPH_Coltparkmeadow)
#  hc(PPH_Coltparkmeadow,weighted=T)

## ----echo=T,eval = F----------------------------------------------------------
#  library(ILSM)
#  motif_names<-c("M111","M112","M113","M114","M211","M212","M213","M311","M312","M411","M121","M122-1",
#         "M122-2","M122-3","M123-1","M123-2","M123-3","M123-4","M123-5","M221-1","M221-2",
#         "M221-3","M222-1","M222-2","M222-3","M222-4","M222-5","M222-6","M222-7","M222-8",
#         "M222-9","M321-1","M321-2","M321-3","M321-4","M321-5","M131","M132-1","M132-2",
#         "M132-3","M132-4","M132-5","M231-1","M231-2","M231-3","M231-4","M231-5","M141")
#  mr <- par(mfrow=c(6,8),mar=c(1,1,3,1))
#  IM_res<-Multi_motif("all")
#   for(i in 1:48){
#       plot(IM_res[[i]],
#            vertex.size=30, vertex.label=NA,
#            vertex.color="#D0E7ED",main=motif_names[i])
#  }
#  par(mr)
#  

## ----echo=F,eval = T,out.width = "80%",fig.align = 'center'-------------------
knitr::include_graphics("../man/figure/motif_ILSM.png")

## ----echo = T,eval = F--------------------------------------------------------
#  icmotif_count(PPH_Coltparkmeadow)
#  icmotif_role(PPH_Coltparkmeadow)
#  icmotif_count(PPH_Coltparkmeadow, weighted=T)
#  icmotif_role(PPH_Coltparkmeadow, weighted=T)

## ----echo = T, eval = F-------------------------------------------------------
#  node_icc(PPH_Coltparkmeadow)
#  node_icc(PPH_Coltparkmeadow,weighted=T)

## ----echo = T,eval = F--------------------------------------------------------
#  library(ILSM)
#  library(fmsb)
#  library(reshape2)
#  library(ggbreak)
#  library(gg.gap)
#  library(ComplexHeatmap)
#  
#  data(PPH_Coltparkmeadow)
#  PPH_net_rader<-data.frame(row.names = c("Max","Min","PPH"),
#                        CoID=c(1,0,coid(PPH_Coltparkmeadow)),
#                        CoIS=c(1,0,cois(PPH_Coltparkmeadow)),
#                        POC=c(1,0,poc(PPH_Coltparkmeadow)[1]),
#                        PCc=c(1,0,pc(PPH_Coltparkmeadow)),
#                        HC=c(1,0,hc(PPH_Coltparkmeadow)))
#  radarchart(PPH_net_rader,
#             # Customize the polygon
#             pcol = c("#00AFBB"), pfcol = scales::alpha(c("#00AFBB"),0.5), plwd = 1.2, plty = 1,
#             # Customize the grid
#             cglcol = "grey", cglty = 1, cglwd =0.8,
#             # Customize the axis
#             axistype=1, caxislabels = c(0, 0.25, 0.5, 0.75, 1.00),
#             axislabcol = "black",
#             calcex=0.6,
#             # Variable labels
#             vlcex = 0.7, vlabels = colnames(PPH_net_rader),title = "Interconnection pattern")
#  
#  
#  PPH_node_centrality<-node_icc(PPH_Coltparkmeadow)
#  PPH_node_centrality <- PPH_node_centrality[,c(2:4)]
#  rownames(PPH_node_centrality)<- c("Cerastium fontanum", "Holcus lanatus","Leucanthemum vulgare","Ranunculus acris","Ranunculus repens","Trifolium pratense","Trifolium repens","Veronica chamaedrys")
#  
#  PPH_node_centrality_bar <- melt(as.matrix(PPH_node_centrality))
#  PPH_node_centrality_bar[,1] <-factor(PPH_node_centrality_bar[,1],levels = c("Ranunculus acris","Ranunculus repens","Leucanthemum vulgare", "Holcus lanatus","Trifolium repens","Cerastium fontanum","Veronica chamaedrys","Trifolium pratense"))
#  
#  colnames(PPH_node_centrality_bar)[1:2] <- c("species","centrality")
#  
#  ggplot(PPH_node_centrality_bar)+
#    geom_bar(aes( species,value,fill= species),stat="identity",  #position = 'stack',
#             width = 0.6)+
#    facet_wrap(vars(centrality), nrow = 2,scales = "free")+
#    labs(x="",y="Cnetrality",title = "Interconnection centrality")+
#    scale_fill_manual(values=c("#BC3C29","#0072B5","#E18727","#20854E","#7876B1","#26343B","#9E9E9E","#FFDC91"))+
#    theme_test()+
#    theme(
#      strip.text = element_text(size = 10 ,margin = margin(t =1.4, b = 1.4, l = 1.2, r = 1.2)),
#      legend.position = c( .80 , .25 ),
#      plot.title = element_text(hjust = 0.5,face = "bold" ),
#      legend.byrow= T,
#      legend.title =element_blank(),
#      legend.text = element_text(size = 9,margin = margin(t =1.6, b = 1.8, l = 1.2, r = 1.2)),
#      legend.key.size = unit(.8, "lines"),
#      legend.box.spacing = unit(8, "cm"),
#      # legend.position = "top",
#      legend.margin = margin(-0.1, 0, -0.2, -0.7, "cm"),
#      plot.margin = margin(0.1, 0.1, -0.1, 0.1, "cm"),
#      axis.title = element_text(size = 10),
#      axis.text = element_text(size= 7.5,colour = "black"),
#      axis.text.x = element_blank(),
#      axis.ticks.x= element_blank())
#  
#  
#  PPH_motif_bar<-data.frame(motif_id=1:48,frequency = icmotif_count(PPH_Coltparkmeadow))
#  PPH_motif_bar$motif_id<-factor(PPH_motif_bar$motif_id)
#  
#  ggplot(PPH_motif_bar,aes(motif_id,frequency.count))+
#     geom_bar(stat="identity",show.legend=F)+
#     scale_y_break(breaks=c(300000,1200000),ticklabels=seq(1200000,1300000,50000),scales=0.2,expand =F)+
#     scale_y_break(breaks=c(55000,130000),ticklabels=seq(130000,300000,60000),scales=0.4,expand =F)+
#     scale_y_break(breaks=c(12000,16000),ticklabels=seq(16000,55000,15000),scales=0.5,expand =F)+
#     scale_y_break(breaks=c(650,1000),ticklabels=seq(1000,12000,3000),scales=0.5,expand =F)+
#        labs(x="",y="Frequency",title = "Interconnection motif")+
#     theme_test()+
#     theme(legend.position="none") + theme(axis.title = element_text(),
#                                           axis.text = element_text( colour = "black"),
#                                           axis.text.x = element_text(size =7 ,colour = "black"),
#                                           axis.text.y = element_text(vjust = 0.15,colour = "black"),
#                                           plot.title = element_text(hjust = 0.5,face = "bold" ))
#  
#  
#  
#  
#  PPH_role <- icmotif_role(PPH_Coltparkmeadow)
#  PPH_role_heatmap<-PPH_role[rowSums(PPH_role)!=0,]
#  
#  rownames(PPH_role_heatmap)<-c( "C. fontanum","H. lanatus","L. vulgare","R. acris","R. repens","T. pratense","T. repens","V. chamaedrys" )
#  colnames(PPH_role_heatmap)<-gsub("role","",colnames(PPH_role_heatmap))
#  
#  
#  Heatmap((log(PPH_role_heatmap + 1)),
#          cluster_rows = T,
#          cluster_columns = F,
#          row_dend_side = c("right"),
#          col = circlize::colorRamp2(c(0, 5, 10, 14), c("#80aecf", "#cbe8c3", "#eca058", "red")),
#          rect_gp = gpar(col = "white", lwd = 1),
#          show_heatmap_legend = T,
#          heatmap_legend_param = list(
#            legend_direction = "vertical",
#            title = "ln(Frequency)",
#            title_gp = gpar(fontsize = 7, fontface =
#                              "bold"),
#            title_position = "leftcenter-rot",
#            legend_height = unit(5, "cm"),
#            labels_gp = gpar(fontsize = 6)
#          ),
#          column_title = "Interconnection role",
#          column_title_side = "top",
#          column_title_gp = gpar(fontface = "bold"),
#          row_names_side = "left",
#          row_names_rot = 45,
#          column_names_rot = 45,
#          column_names_gp = gpar(fontsize = 6),
#          row_names_gp = gpar(fontsize = 7),
#          column_names_centered = F,
#          row_names_centered = T
#  )

## ----echo=F,eval = T,out.width = "70%",fig.align = 'center'-------------------
knitr::include_graphics("../man/figure/worked_example.png")

## ----echo = T, eval = F-------------------------------------------------------
#  #Testing the significance of correlation of interaction degree and similarity
#  library(ggplot2)
#  set.seed(12)
#  coid_obs<-coid(PPH_Coltparkmeadow)
#  cois_obs<-cois(PPH_Coltparkmeadow)
#  null_net<-vector("list",100)
#   i<-1
#     while (i<=100) {
#        tmp<-tri_null(PPH_Coltparkmeadow,1, null_type = "both_sub",sub_method="r00")[[1]]# try "sauve"
#        if(poc(tmp)[2]>=4){# ensuring the simulated networks have at least four connector nodes. This is up to the structure to test. E.g., too few connector nodes led to NA for CoID.
#           null_net[[i]]<-tmp;
#           i<-i+1
#        }}
#     coid_null<-pbsapply(null_net,coid)
#     cois_null<-pbsapply(null_net,cois)
#     icmotif_null<-pbsapply(null_net,function(x){icmotif_count(x)[,2]})# Counts of motifs for null models
#     # function to calculate the Z value and P value.
#     null_zp<-function(original_value,nullvalues){
#        z=(original_value-mean(nullvalues,na.rm=T))/sd(nullvalues,na.rm=T)
#        pless <- sum(original_value >= nullvalues, na.rm = TRUE)
#        pmore <- sum(original_value <= nullvalues, na.rm = TRUE)
#        p<-2 * pmin(pless, pmore)
#        p=pmin(1, (p + 1)/(length(nullvalues) + 1))
#        c(z=z,p=p)
#     }
#     # Z and P values
#     null_zp(coid_obs,coid_null)# for coid
#     null_zp(cois_obs,cois_null)# for cois
#     icmotif_null_and_obs<-cbind(icmotif_count(PPH_Coltparkmeadow)[,2],icmotif_null)
#     apply( icmotif_null_and_obs,1,function(x){null_zp(x[1],x[-1])})# for motifs

## ----echo=F,eval = T,out.width = "80%",fig.align = 'center'-------------------
knitr::include_graphics("../man/figure/intra_guild_icmotif.png")

## ----echo = T,eval = F--------------------------------------------------------
#  ## A toy tripartite network with intra-guild negative interactions, inter-guild mutualistic interactions and inter-guild antagonistic interactions.
#  set.seed(12)
#  ##4 a-nodes,5 b-nodes, and 3 c-nodes
#  
#  ##intra-guild interaction matrices
#  mat_aa<-matrix(runif(16,-0.8,-0.2),4,4)
#  mat_bb<-matrix(runif(25,-0.8,-0.2),5,5)
#  mat_cc<-matrix(runif(9,-0.8,-0.2),3,3)
#  
#  ##inter-guild interaction matrices between a- and b-nodes.
#  mat_ab<-mat_ba<-matrix(sample(c(rep(0,8),runif(12,0,0.5))),4,5,byrow=T)# interaction probability = 12/20
#  mat_ba[mat_ba>0]<-runif(12,0,0.5);mat_ba<-t(mat_ba)
#  
#  ##inter-guild interaction matrices between b- and c-nodes.
#  mat_cb<-mat_bc<-matrix(sample(c(rep(0,8),runif(7,0,0.5))),3,5,byrow=T)# interaction probability = 7/15
#  mat_bc[mat_bc>0]<-runif(7,0,0.5);mat_bc<--t(mat_bc)
#  toy_mat<-rbind(cbind(mat_aa,mat_ab,matrix(0,4,3)),cbind(mat_ba,mat_bb,mat_bc),cbind(matrix(0,3,4),mat_cb,mat_cc))
#  
#  ##set the node names
#  rownames(toy_mat)<-c(paste0("a",1:4),paste0("b",1:5),paste0("c",1:3));colnames(toy_mat)<-c(paste0("a",1:4),paste0("b",1:5),paste0("c",1:3))
#  diag(toy_mat)<--1 #assume -1 for diagonal elements
#  
#  myguilds=c(rep("a",4),rep("b",5),rep("c",3))
#  ig_icmotif_count(toy_mat,guilds=myguilds)
#  ig_icmotif_role(toy_mat,guilds=myguilds)
#  ig_icmotif_count(toy_mat,guilds=myguilds,weighted=T)
#  ig_icmotif_role(toy_mat,guilds=myguilds, weighted=T)

## ----echo = T,eval = F--------------------------------------------------------
#  ig_ddom(toy_mat)

## ----echo = T,eval = F--------------------------------------------------------
#  myguilds=c(rep("a",4),rep("b",5),rep("c",3))
#  ig_overlap_guild(toy_mat,guilds=myguilds)

## ----echo = T, eval = F-------------------------------------------------------
#  library(ILSM)
#  library(rdist)
#  library(vegan)
#  library(ggplot2)
#  library(gghalves)
#  library(ggpubr)
#  load("./data/PPH_Network.rda")
#  #interconnection pattern
#  PPH_IP <-t(as.data.frame(lapply(PPH_Network, function(x) {
#        c(poc(x)[1],coid(x), cois(x), pc(x),  hc(x))
#     })))
#  rownames(PPH_IP) <- paste0("net", seq = 1:18)
#  PPH_IP[is.na(PPH_IP)] <- 0
#  PPH_IP_dist <- rdist(PPH_IP, metric = "correlation")
#  PPH_IP_dist <- PPH_IP_dist / max(PPH_IP_dist)
#  PPH_IP_dist_beta <-betadisper(PPH_IP_dist, group = rep("net", 18), type = "centroid")$distances
#  #interconnection motif
#  PPH_motif <-
#     t(as.data.frame(lapply(PPH_Network, function(x) {
#        icmotif_count(x)
#     })))
#  rownames(PPH_motif) <- paste0("net", seq = 1:18)
#  PPH_motif_dist <- rdist(PPH_motif, metric = "correlation")
#  PPH_motif_dist <- PPH_motif_dist / max(PPH_motif_dist)
#  PPH_motif_dist_beta <-betadisper(PPH_motif_dist, group = rep("net", 18), type = "centroid")$distances
#  
#  PPH_macro.vs.meso <-
#     data.frame(
#        type = c(rep(c("macro", "meso"), each = 18)),
#        dist_cen = c(PPH_IP_dist_beta, PPH_motif_dist_beta)
#     )
#  PPH_macro.vs.meso$type <- factor(PPH_macro.vs.meso$type)
#  #Wilcoxon test
#  pph_wilcox <-wilcox.test(PPH_macro.vs.meso[1:18, 2], PPH_macro.vs.meso[19:36, 2], paired = T)
#  pph_wilcox$statistic
#  pph_wilcox$p.value
#  #plot
#  ggplot(PPH_macro.vs.meso,aes(type,dist_cen))+
#     geom_half_boxplot(aes(fill=type),
#                  outlier.shape = NA,nudge =0, width = .6,errorbar.draw = F)+
#     theme_test()+
#     geom_half_point(side = "r",shape=18,
#                 alpha = 0.6,size=1)+
#     scale_fill_manual(values=c("#ff8099","#20b2aa"))+
#     # annotate("text", label = "paste(bold(italic(p)), \" = 0.014 \")" ,
#     #          x = 1.5, y = 0.744, size = 3.2, colour = "black",parse=T)+
#     labs(x="",y="Distance to centroid (PPH)")+
#     stat_compare_means(method="wilcox.test",paired = T,size=5,vjust = 0.5,hjust=-0.3)+
#     theme(legend.position="none") + theme(axis.title = element_text(size = 8, face = "bold"),
#                                           axis.text = element_text(size = 10,color = "black"),
#                                           axis.text.x = element_text(size = 10, face = "bold"),
#                                           axis.text.y = element_text(size = 10))

## ----echo = TRUE, eval = FALSE------------------------------------------------
#  
#  #interconnection motif role
#  PPH_MOTIF_ROLE_list<-lapply(PPH_Network, function(x){icmotif_role(x)})
#  #interconnection centrality
#  PPH_IC_list<-lapply(PPH_Network, function(x){node_icc(x)})
#  
#  re_adjust<-function(role,cen){
#     spe<-rownames(role)[which(rowSums(role)!=0)]
#     cen<-cen[,-1]
#     cen<-apply(cen, 1, function(x){as.numeric(x)})%>%t()
#     return(list(role[spe,],cen[spe,],length(spe)))
#  }
#  group <- NULL
#  PPH_MOTIF_ROLE <- NULL
#  PPH_IC <- NULL
#  for(i in 1:18){
#     l <- nrow(PPH_IC_list[[i]])
#     group <- c(group,rep(paste0("net",i),l))
#     PPH_read<-re_adjust(PPH_MOTIF_ROLE_list[[i]],PPH_IC_list[[i]])
#     PPH_MOTIF_ROLE<-rbind(PPH_MOTIF_ROLE,PPH_read[[1]])
#     PPH_IC<-rbind(PPH_IC,PPH_read[[2]])
#  }
#  groups <- factor(group,levels = paste0("net",1:18))
#  
#  PPH_IC_dist <- rdist(PPH_IC, metric = "correlation")
#  PPH_IC_dist <- PPH_IC_dist / max(PPH_IC_dist)
#  PPH_IC_dist_beta <-betadisper(PPH_IC_dist, groups, type = "centroid")$distances
#  
#  PPH_MOTIF_ROLE_dist <- rdist(PPH_MOTIF_ROLE, metric = "correlation")
#  PPH_MOTIF_ROLE_dist <- PPH_MOTIF_ROLE_dist / max(PPH_MOTIF_ROLE_dist)
#  PPH_MOTIF_ROLE_dist_beta <-betadisper(PPH_MOTIF_ROLE_dist, groups, type = "centroid")$distances
#  
#  PPH_micro.vs.meso <-
#     data.frame(type = c(rep(c("micro", "meso"), each = length(group))),
#                dist_cen = c(PPH_IC_dist_beta, PPH_MOTIF_ROLE_dist_beta))
#  PPH_micro.vs.meso$type <- factor(PPH_micro.vs.meso$type,levels = c("micro","meso"))
#  
#  #Wilcoxon test
#  pph_wilcox <- wilcox.test(PPH_micro.vs.meso[1:184, 2], PPH_micro.vs.meso[185:368, 2], paired = T)
#  pph_wilcox$statistic
#  pph_wilcox$p.value
#  #plotting
#  ggplot(PPH_micro.vs.meso,aes(type,dist_cen))+
#     geom_half_boxplot(aes(fill=factor(type)),outlier.shape = NA, width = .6,errorbar.draw = F)+
#     theme_test()+
#     scale_fill_manual(values=c("#5390fe","#20b2aa"))+
#     geom_half_point(side = "r",
#                     shape=18,
#                     alpha = 0.6,size=1)+
#     annotate("text", label = "paste(bold(italic(p)), \" < 0.001 \")",
#              x = 1.5, y = 0.74, size = 3.2, colour = "black",parse=T)+
#     labs(x="",y="Distance to centroid (PPH)")+
#     theme(legend.position="none") + theme(axis.title = element_text(size = 8, face = "bold"),
#                                           axis.text = element_text(size = 10,color = "black"),
#                                           axis.text.x = element_text(size = 10, face = "bold"),
#                                           axis.text.y = element_text(size = 10))

## ----echo = TRUE, eval = FALSE------------------------------------------------
#  load("./data/PHP_Network.rda")
#  #interconnection pattern
#  PHP_IP <-
#     t(as.data.frame(lapply(PHP_Network, function(x) {
#        c(poc(x)[1],coid(x), cois(x), pc(x),  hc(x))
#     })))
#  rownames(PHP_IP) <- paste0("net", seq = 1:31)
#  PHP_IP[is.na(PHP_IP)] <- 0
#  PHP_IP_dist <- rdist(PHP_IP, metric = "correlation")
#  PHP_IP_dist <- PHP_IP_dist / max(PHP_IP_dist)
#  PHP_IP_dist_beta <-betadisper(PHP_IP_dist, group = rep("net", 31), type = "centroid")$distances
#  
#  
#  #interconnection motif
#  PHP_MOTIF <-
#     t(as.data.frame(lapply(PHP_Network, function(x) {
#        icmotif_count(x)[,2]
#     })))
#  rownames(PHP_MOTIF) <- paste0("net", seq = 1:31)
#  PHP_MOTIF_dist <- rdist(PHP_MOTIF, metric = "correlation")
#  PHP_MOTIF_dist <- PHP_MOTIF_dist / max(PHP_MOTIF_dist)
#  PHP_MOTIF_dist_beta <-betadisper(PHP_MOTIF_dist, group = rep("net", 31), type = "centroid")$distances
#  
#  PHP_macro.vs.meso <-
#     data.frame(
#        type = c(rep(c("macro", "meso"), each = 31)),
#        dist_cen = c(PHP_IP_dist_beta, PHP_MOTIF_dist_beta)
#     )
#  PHP_macro.vs.meso$type <- factor(PHP_macro.vs.meso$type)
#  
#  #Wilcoxon test
#  php_wilcox <-
#     wilcox.test(PHP_macro.vs.meso[1:31, 2], PHP_macro.vs.meso[32:62, 2], paired = T)
#  php_wilcox$statistic
#  php_wilcox$p.value
#  #plotting
#  ggplot(PHP_macro.vs.meso,aes(type,dist_cen))+
#     geom_half_boxplot(aes(fill=type),
#                  outlier.shape = NA,nudge =0, width = .6,errorbar.draw = F)+
#     theme_test()+
#     geom_half_point(side = "r",shape=18,
#                 alpha = 0.6,size=1)+
#     scale_fill_manual(values=c("#ff8099","#20b2aa"))+
#     labs(x="",y="Distance to centroid (PHP)")+
#     stat_compare_means(method="wilcox.test",paired = T,size=5,vjust = 0.5,hjust=-0.3)+
#     theme(legend.position="none") + theme(axis.title = element_text(size = 8, face = "bold"),
#                                           axis.text = element_text(size = 10,color = "black"),
#                                           axis.text.x = element_text(size = 10, face = "bold"),
#                                           axis.text.y = element_text(size = 10))

## ----echo = TRUE, eval = FALSE------------------------------------------------
#  #interconnection motif role
#  PHP_MOTIF_ROLE_list<-lapply(PHP_Network, function(x){icmotif_role(x)})
#  #interconnection centrality
#  PHP_IC_list<-lapply(PHP_Network, function(x){node_icc(x)})
#  
#  re_adjust<-function(role,cen){
#     spe<-rownames(role)[which(rowSums(role)!=0)]
#     cen<-cen[,-1]
#     cen<-apply(cen, 1, function(x){as.numeric(x)})%>%t()
#     return(list(role[spe,],cen[spe,],length(spe)))
#  }
#  group <- NULL
#  PHP_MOTIF_ROLE <- NULL
#  PHP_IC <- NULL
#  for(i in 1:31){
#     l <- nrow(PHP_IC_list[[i]])
#     group <- c(group,rep(paste0("net",i),l))
#     PHP_read<-re_adjust(PHP_MOTIF_ROLE_list[[i]],PHP_IC_list[[i]])
#     PHP_MOTIF_ROLE<-rbind(PHP_MOTIF_ROLE,PHP_read[[1]])
#     PHP_IC<-rbind(PHP_IC,PHP_read[[2]])
#  }
#  groups <- factor(group,levels = paste0("net",1:31))
#  
#  
#  PHP_IC_dist <- rdist(PHP_IC, metric = "correlation")
#  PHP_IC_dist <- PHP_IC_dist / max(PHP_IC_dist)
#  PHP_IC_dist_beta <-betadisper(PHP_IC_dist, groups, type = "centroid")$distances
#  
#  PHP_MOTIF_ROLE_dist <- rdist(PHP_MOTIF_ROLE, metric = "correlation")
#  PHP_MOTIF_ROLE_dist <- PHP_MOTIF_ROLE_dist / max(PHP_MOTIF_ROLE_dist)
#  PHP_MOTIF_ROLE_dist_beta <-betadisper(PHP_MOTIF_ROLE_dist, groups, type = "centroid")$distances
#  
#  PHP_micro.vs.meso <-
#     data.frame(type = c(rep(c("micro", "meso"), each = length(group))),
#                dist_cen = c(PHP_IC_dist_beta, PHP_MOTIF_ROLE_dist_beta))
#  PHP_micro.vs.meso$type <- factor(PHP_micro.vs.meso$type,levels = c("micro","meso"))
#  
#  #Wilcoxon test
#  PHP_wilcox <- wilcox.test(PHP_micro.vs.meso[1:927, 2], PHP_micro.vs.meso[928:1854, 2], paired = T)
#  PHP_wilcox$statistic
#  PHP_wilcox$p.value
#  #plotting
#  ggplot(PHP_micro.vs.meso,aes(type,dist_cen))+
#     geom_half_boxplot(aes(fill=factor(type)),outlier.shape = NA, width = .6,errorbar.draw = F)+
#     theme_test()+
#     scale_fill_manual(values=c("#5390fe","#20b2aa"))+
#     geom_half_point(side = "r",
#                     shape=18,
#                     alpha = 0.6,size=1)+
#     annotate("text", label = "paste(bold(italic(p)), \" < 0.001 \")",
#              x = 1.5, y = 0.74, size = 3.2, colour = "black",parse=T)+
#     labs(x="",y="Distance to centroid (PHP)")+
#     theme(legend.position="none") + theme(axis.title = element_text(size = 8, face = "bold"),
#                                           axis.text = element_text(size = 10,color = "black"),
#                                           axis.text.x = element_text(size = 10, face = "bold"),
#                                           axis.text.y = element_text(size = 10))

## ----echo=F,eval = T,out.width = "80%",fig.align = 'center'-------------------
knitr::include_graphics("../man/figure/marco_vs_micro_vs_meso.png")

## ----echo=T,eval = F----------------------------------------------------------
#  library(ILSM)
#  library(dplyr)
#  library(vegan)
#  library(ggalt)
#  
#  data(PPH_Network)
#  data(PHP_Network)
#  The_structure_motif <-
#     rbind(
#        lapply(PHP_Network, function(z) {
#           ILSM::icmotif_count(z)
#        }) %>% data.frame() %>% t(),
#        lapply(PPH_Network, function(z) {
#           ILSM::icmotif_count(z)
#        }) %>% data.frame() %>% t()
#     )
#  
#  rownames(The_structure_motif)<-c(paste0("PHP",seq=1:31),paste0("PPH",seq=1:18))
#  
#  The_structure_motif_nmds<-The_structure_motif%>%vegdist(method = "bray")%>%metaMDS(k=2)
#  
#  The_structure_motif_sample<-The_structure_motif_nmds$points%>%data.frame()
#  The_structure_motif_sample$name<-c(rep("PHP",31),rep("PPH",18))
#  colnames(The_structure_motif_sample)[1:2]<-c("NMDS1","NMDS2")
#  
#  The_structure_motif_nmds$stress
#  
#  ggplot(The_structure_motif_sample,aes(NMDS1,NMDS2,color=name))+
#     geom_point(size=1)+
#     theme_test()+
#     theme(#panel.border=element_rect(linewidth = 1),
#           axis.title = element_text(size = 9),axis.text = element_text(size = 9),legend.key.size = unit(4,"mm"),
#           legend.text = element_text(size=6,face = "bold"),legend.position.inside = c( .94 , .86 ))+
#     geom_encircle(aes(NMDS1,NMDS2,group = name,fill=name),size=0.2,expand=0,spread=0,alpha =0.2,s_shape=1)+
#     annotate("text", label = "paste(bold(Adonis),\": \" ,italic(R)^2, \" = 0.085*** \" )",
#              x = -3.2, y = -1.7, size = 3, colour = "black",parse=T)+
#     annotate("text", label = "paste(bold(Anosim) , \": \",italic(R), \" = 0.173** \"  )",
#              x = -3.25, y = -1.45, size = 3, colour = "black",parse=T)+
#     annotate("text", label = "paste(bold(Stress) , \" = 0.043\")",
#              x = -3.66, y = -1.15, size = 3, colour = "black",parse=T)+
#     scale_fill_discrete(name="")+scale_color_discrete(name="")
#  

## ----echo=F,eval = T,out.width = "80%",fig.align = 'center'-------------------
knitr::include_graphics("../man/figure/PPHvsPHP.png")

Try the ILSM package in your browser

Any scripts or data that you put into this service are public.

ILSM documentation built on Aug. 8, 2025, 7:42 p.m.