Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----echo = T, eval = F-------------------------------------------------------
# devtools::install_github("WeichengSun/ILSM")
## ----echo=F,eval = T,out.width = "70%",fig.align = 'center'-------------------
knitr::include_graphics("../man/figure/trinet_and_example.png")
## ----echo=T, eval = F, out.width = "100%"-------------------------------------
# library(ILSM);library(igraph)
# #Load the 'igraph' data
# data(PPH_Coltparkmeadow)
# #Or read two matrices and transform them to an 'igraph'. .
# P_mat<-as.matrix(read.csv("../data/PP.csv",row.names = 1,check.names=FALSE))
# Q_mat<-as.matrix(read.csv("../data/HP.csv",row.names = 1,check.names=FALSE))
# PPH_Coltparkmeadow<-trigraph_from_mat(P_mat,Q_mat,weighted = F)
#
# #Generating random weights to showcase weighted metrics
# E(PPH_Coltparkmeadow)$weight<-runif(length(E(PPH_Coltparkmeadow)),0.1,1.5)
#
# #proportion of connector nodes
# poc(PPH_Coltparkmeadow)
# poc(P_mat,Q_mat)
# #correlation of interaction degree
# coid(PPH_Coltparkmeadow)
# coid(PPH_Coltparkmeadow,weighted=T)
# #correlation of interaction similarity
# cois(PPH_Coltparkmeadow)
# cois(PPH_Coltparkmeadow,weighted=T)
# #participation coefficient
# pc(PPH_Coltparkmeadow)
# pc(PPH_Coltparkmeadow,weighted=T)
# #proportion of connector nodes in shared node hubs
# hc(PPH_Coltparkmeadow)
# hc(PPH_Coltparkmeadow,weighted=T)
## ----echo=T,eval = F----------------------------------------------------------
# library(ILSM)
# motif_names<-c("M111","M112","M113","M114","M211","M212","M213","M311","M312","M411","M121","M122-1",
# "M122-2","M122-3","M123-1","M123-2","M123-3","M123-4","M123-5","M221-1","M221-2",
# "M221-3","M222-1","M222-2","M222-3","M222-4","M222-5","M222-6","M222-7","M222-8",
# "M222-9","M321-1","M321-2","M321-3","M321-4","M321-5","M131","M132-1","M132-2",
# "M132-3","M132-4","M132-5","M231-1","M231-2","M231-3","M231-4","M231-5","M141")
# mr <- par(mfrow=c(6,8),mar=c(1,1,3,1))
# IM_res<-Multi_motif("all")
# for(i in 1:48){
# plot(IM_res[[i]],
# vertex.size=30, vertex.label=NA,
# vertex.color="#D0E7ED",main=motif_names[i])
# }
# par(mr)
#
## ----echo=F,eval = T,out.width = "80%",fig.align = 'center'-------------------
knitr::include_graphics("../man/figure/motif_ILSM.png")
## ----echo = T,eval = F--------------------------------------------------------
# icmotif_count(PPH_Coltparkmeadow)
# icmotif_role(PPH_Coltparkmeadow)
# icmotif_count(PPH_Coltparkmeadow, weighted=T)
# icmotif_role(PPH_Coltparkmeadow, weighted=T)
## ----echo = T, eval = F-------------------------------------------------------
# node_icc(PPH_Coltparkmeadow)
# node_icc(PPH_Coltparkmeadow,weighted=T)
## ----echo = T,eval = F--------------------------------------------------------
# library(ILSM)
# library(fmsb)
# library(reshape2)
# library(ggbreak)
# library(gg.gap)
# library(ComplexHeatmap)
#
# data(PPH_Coltparkmeadow)
# PPH_net_rader<-data.frame(row.names = c("Max","Min","PPH"),
# CoID=c(1,0,coid(PPH_Coltparkmeadow)),
# CoIS=c(1,0,cois(PPH_Coltparkmeadow)),
# POC=c(1,0,poc(PPH_Coltparkmeadow)[1]),
# PCc=c(1,0,pc(PPH_Coltparkmeadow)),
# HC=c(1,0,hc(PPH_Coltparkmeadow)))
# radarchart(PPH_net_rader,
# # Customize the polygon
# pcol = c("#00AFBB"), pfcol = scales::alpha(c("#00AFBB"),0.5), plwd = 1.2, plty = 1,
# # Customize the grid
# cglcol = "grey", cglty = 1, cglwd =0.8,
# # Customize the axis
# axistype=1, caxislabels = c(0, 0.25, 0.5, 0.75, 1.00),
# axislabcol = "black",
# calcex=0.6,
# # Variable labels
# vlcex = 0.7, vlabels = colnames(PPH_net_rader),title = "Interconnection pattern")
#
#
# PPH_node_centrality<-node_icc(PPH_Coltparkmeadow)
# PPH_node_centrality <- PPH_node_centrality[,c(2:4)]
# rownames(PPH_node_centrality)<- c("Cerastium fontanum", "Holcus lanatus","Leucanthemum vulgare","Ranunculus acris","Ranunculus repens","Trifolium pratense","Trifolium repens","Veronica chamaedrys")
#
# PPH_node_centrality_bar <- melt(as.matrix(PPH_node_centrality))
# PPH_node_centrality_bar[,1] <-factor(PPH_node_centrality_bar[,1],levels = c("Ranunculus acris","Ranunculus repens","Leucanthemum vulgare", "Holcus lanatus","Trifolium repens","Cerastium fontanum","Veronica chamaedrys","Trifolium pratense"))
#
# colnames(PPH_node_centrality_bar)[1:2] <- c("species","centrality")
#
# ggplot(PPH_node_centrality_bar)+
# geom_bar(aes( species,value,fill= species),stat="identity", #position = 'stack',
# width = 0.6)+
# facet_wrap(vars(centrality), nrow = 2,scales = "free")+
# labs(x="",y="Cnetrality",title = "Interconnection centrality")+
# scale_fill_manual(values=c("#BC3C29","#0072B5","#E18727","#20854E","#7876B1","#26343B","#9E9E9E","#FFDC91"))+
# theme_test()+
# theme(
# strip.text = element_text(size = 10 ,margin = margin(t =1.4, b = 1.4, l = 1.2, r = 1.2)),
# legend.position = c( .80 , .25 ),
# plot.title = element_text(hjust = 0.5,face = "bold" ),
# legend.byrow= T,
# legend.title =element_blank(),
# legend.text = element_text(size = 9,margin = margin(t =1.6, b = 1.8, l = 1.2, r = 1.2)),
# legend.key.size = unit(.8, "lines"),
# legend.box.spacing = unit(8, "cm"),
# # legend.position = "top",
# legend.margin = margin(-0.1, 0, -0.2, -0.7, "cm"),
# plot.margin = margin(0.1, 0.1, -0.1, 0.1, "cm"),
# axis.title = element_text(size = 10),
# axis.text = element_text(size= 7.5,colour = "black"),
# axis.text.x = element_blank(),
# axis.ticks.x= element_blank())
#
#
# PPH_motif_bar<-data.frame(motif_id=1:48,frequency = icmotif_count(PPH_Coltparkmeadow))
# PPH_motif_bar$motif_id<-factor(PPH_motif_bar$motif_id)
#
# ggplot(PPH_motif_bar,aes(motif_id,frequency.count))+
# geom_bar(stat="identity",show.legend=F)+
# scale_y_break(breaks=c(300000,1200000),ticklabels=seq(1200000,1300000,50000),scales=0.2,expand =F)+
# scale_y_break(breaks=c(55000,130000),ticklabels=seq(130000,300000,60000),scales=0.4,expand =F)+
# scale_y_break(breaks=c(12000,16000),ticklabels=seq(16000,55000,15000),scales=0.5,expand =F)+
# scale_y_break(breaks=c(650,1000),ticklabels=seq(1000,12000,3000),scales=0.5,expand =F)+
# labs(x="",y="Frequency",title = "Interconnection motif")+
# theme_test()+
# theme(legend.position="none") + theme(axis.title = element_text(),
# axis.text = element_text( colour = "black"),
# axis.text.x = element_text(size =7 ,colour = "black"),
# axis.text.y = element_text(vjust = 0.15,colour = "black"),
# plot.title = element_text(hjust = 0.5,face = "bold" ))
#
#
#
#
# PPH_role <- icmotif_role(PPH_Coltparkmeadow)
# PPH_role_heatmap<-PPH_role[rowSums(PPH_role)!=0,]
#
# rownames(PPH_role_heatmap)<-c( "C. fontanum","H. lanatus","L. vulgare","R. acris","R. repens","T. pratense","T. repens","V. chamaedrys" )
# colnames(PPH_role_heatmap)<-gsub("role","",colnames(PPH_role_heatmap))
#
#
# Heatmap((log(PPH_role_heatmap + 1)),
# cluster_rows = T,
# cluster_columns = F,
# row_dend_side = c("right"),
# col = circlize::colorRamp2(c(0, 5, 10, 14), c("#80aecf", "#cbe8c3", "#eca058", "red")),
# rect_gp = gpar(col = "white", lwd = 1),
# show_heatmap_legend = T,
# heatmap_legend_param = list(
# legend_direction = "vertical",
# title = "ln(Frequency)",
# title_gp = gpar(fontsize = 7, fontface =
# "bold"),
# title_position = "leftcenter-rot",
# legend_height = unit(5, "cm"),
# labels_gp = gpar(fontsize = 6)
# ),
# column_title = "Interconnection role",
# column_title_side = "top",
# column_title_gp = gpar(fontface = "bold"),
# row_names_side = "left",
# row_names_rot = 45,
# column_names_rot = 45,
# column_names_gp = gpar(fontsize = 6),
# row_names_gp = gpar(fontsize = 7),
# column_names_centered = F,
# row_names_centered = T
# )
## ----echo=F,eval = T,out.width = "70%",fig.align = 'center'-------------------
knitr::include_graphics("../man/figure/worked_example.png")
## ----echo = T, eval = F-------------------------------------------------------
# #Testing the significance of correlation of interaction degree and similarity
# library(ggplot2)
# set.seed(12)
# coid_obs<-coid(PPH_Coltparkmeadow)
# cois_obs<-cois(PPH_Coltparkmeadow)
# null_net<-vector("list",100)
# i<-1
# while (i<=100) {
# tmp<-tri_null(PPH_Coltparkmeadow,1, null_type = "both_sub",sub_method="r00")[[1]]# try "sauve"
# if(poc(tmp)[2]>=4){# ensuring the simulated networks have at least four connector nodes. This is up to the structure to test. E.g., too few connector nodes led to NA for CoID.
# null_net[[i]]<-tmp;
# i<-i+1
# }}
# coid_null<-pbsapply(null_net,coid)
# cois_null<-pbsapply(null_net,cois)
# icmotif_null<-pbsapply(null_net,function(x){icmotif_count(x)[,2]})# Counts of motifs for null models
# # function to calculate the Z value and P value.
# null_zp<-function(original_value,nullvalues){
# z=(original_value-mean(nullvalues,na.rm=T))/sd(nullvalues,na.rm=T)
# pless <- sum(original_value >= nullvalues, na.rm = TRUE)
# pmore <- sum(original_value <= nullvalues, na.rm = TRUE)
# p<-2 * pmin(pless, pmore)
# p=pmin(1, (p + 1)/(length(nullvalues) + 1))
# c(z=z,p=p)
# }
# # Z and P values
# null_zp(coid_obs,coid_null)# for coid
# null_zp(cois_obs,cois_null)# for cois
# icmotif_null_and_obs<-cbind(icmotif_count(PPH_Coltparkmeadow)[,2],icmotif_null)
# apply( icmotif_null_and_obs,1,function(x){null_zp(x[1],x[-1])})# for motifs
## ----echo=F,eval = T,out.width = "80%",fig.align = 'center'-------------------
knitr::include_graphics("../man/figure/intra_guild_icmotif.png")
## ----echo = T,eval = F--------------------------------------------------------
# ## A toy tripartite network with intra-guild negative interactions, inter-guild mutualistic interactions and inter-guild antagonistic interactions.
# set.seed(12)
# ##4 a-nodes,5 b-nodes, and 3 c-nodes
#
# ##intra-guild interaction matrices
# mat_aa<-matrix(runif(16,-0.8,-0.2),4,4)
# mat_bb<-matrix(runif(25,-0.8,-0.2),5,5)
# mat_cc<-matrix(runif(9,-0.8,-0.2),3,3)
#
# ##inter-guild interaction matrices between a- and b-nodes.
# mat_ab<-mat_ba<-matrix(sample(c(rep(0,8),runif(12,0,0.5))),4,5,byrow=T)# interaction probability = 12/20
# mat_ba[mat_ba>0]<-runif(12,0,0.5);mat_ba<-t(mat_ba)
#
# ##inter-guild interaction matrices between b- and c-nodes.
# mat_cb<-mat_bc<-matrix(sample(c(rep(0,8),runif(7,0,0.5))),3,5,byrow=T)# interaction probability = 7/15
# mat_bc[mat_bc>0]<-runif(7,0,0.5);mat_bc<--t(mat_bc)
# toy_mat<-rbind(cbind(mat_aa,mat_ab,matrix(0,4,3)),cbind(mat_ba,mat_bb,mat_bc),cbind(matrix(0,3,4),mat_cb,mat_cc))
#
# ##set the node names
# rownames(toy_mat)<-c(paste0("a",1:4),paste0("b",1:5),paste0("c",1:3));colnames(toy_mat)<-c(paste0("a",1:4),paste0("b",1:5),paste0("c",1:3))
# diag(toy_mat)<--1 #assume -1 for diagonal elements
#
# myguilds=c(rep("a",4),rep("b",5),rep("c",3))
# ig_icmotif_count(toy_mat,guilds=myguilds)
# ig_icmotif_role(toy_mat,guilds=myguilds)
# ig_icmotif_count(toy_mat,guilds=myguilds,weighted=T)
# ig_icmotif_role(toy_mat,guilds=myguilds, weighted=T)
## ----echo = T,eval = F--------------------------------------------------------
# ig_ddom(toy_mat)
## ----echo = T,eval = F--------------------------------------------------------
# myguilds=c(rep("a",4),rep("b",5),rep("c",3))
# ig_overlap_guild(toy_mat,guilds=myguilds)
## ----echo = T, eval = F-------------------------------------------------------
# library(ILSM)
# library(rdist)
# library(vegan)
# library(ggplot2)
# library(gghalves)
# library(ggpubr)
# load("./data/PPH_Network.rda")
# #interconnection pattern
# PPH_IP <-t(as.data.frame(lapply(PPH_Network, function(x) {
# c(poc(x)[1],coid(x), cois(x), pc(x), hc(x))
# })))
# rownames(PPH_IP) <- paste0("net", seq = 1:18)
# PPH_IP[is.na(PPH_IP)] <- 0
# PPH_IP_dist <- rdist(PPH_IP, metric = "correlation")
# PPH_IP_dist <- PPH_IP_dist / max(PPH_IP_dist)
# PPH_IP_dist_beta <-betadisper(PPH_IP_dist, group = rep("net", 18), type = "centroid")$distances
# #interconnection motif
# PPH_motif <-
# t(as.data.frame(lapply(PPH_Network, function(x) {
# icmotif_count(x)
# })))
# rownames(PPH_motif) <- paste0("net", seq = 1:18)
# PPH_motif_dist <- rdist(PPH_motif, metric = "correlation")
# PPH_motif_dist <- PPH_motif_dist / max(PPH_motif_dist)
# PPH_motif_dist_beta <-betadisper(PPH_motif_dist, group = rep("net", 18), type = "centroid")$distances
#
# PPH_macro.vs.meso <-
# data.frame(
# type = c(rep(c("macro", "meso"), each = 18)),
# dist_cen = c(PPH_IP_dist_beta, PPH_motif_dist_beta)
# )
# PPH_macro.vs.meso$type <- factor(PPH_macro.vs.meso$type)
# #Wilcoxon test
# pph_wilcox <-wilcox.test(PPH_macro.vs.meso[1:18, 2], PPH_macro.vs.meso[19:36, 2], paired = T)
# pph_wilcox$statistic
# pph_wilcox$p.value
# #plot
# ggplot(PPH_macro.vs.meso,aes(type,dist_cen))+
# geom_half_boxplot(aes(fill=type),
# outlier.shape = NA,nudge =0, width = .6,errorbar.draw = F)+
# theme_test()+
# geom_half_point(side = "r",shape=18,
# alpha = 0.6,size=1)+
# scale_fill_manual(values=c("#ff8099","#20b2aa"))+
# # annotate("text", label = "paste(bold(italic(p)), \" = 0.014 \")" ,
# # x = 1.5, y = 0.744, size = 3.2, colour = "black",parse=T)+
# labs(x="",y="Distance to centroid (PPH)")+
# stat_compare_means(method="wilcox.test",paired = T,size=5,vjust = 0.5,hjust=-0.3)+
# theme(legend.position="none") + theme(axis.title = element_text(size = 8, face = "bold"),
# axis.text = element_text(size = 10,color = "black"),
# axis.text.x = element_text(size = 10, face = "bold"),
# axis.text.y = element_text(size = 10))
## ----echo = TRUE, eval = FALSE------------------------------------------------
#
# #interconnection motif role
# PPH_MOTIF_ROLE_list<-lapply(PPH_Network, function(x){icmotif_role(x)})
# #interconnection centrality
# PPH_IC_list<-lapply(PPH_Network, function(x){node_icc(x)})
#
# re_adjust<-function(role,cen){
# spe<-rownames(role)[which(rowSums(role)!=0)]
# cen<-cen[,-1]
# cen<-apply(cen, 1, function(x){as.numeric(x)})%>%t()
# return(list(role[spe,],cen[spe,],length(spe)))
# }
# group <- NULL
# PPH_MOTIF_ROLE <- NULL
# PPH_IC <- NULL
# for(i in 1:18){
# l <- nrow(PPH_IC_list[[i]])
# group <- c(group,rep(paste0("net",i),l))
# PPH_read<-re_adjust(PPH_MOTIF_ROLE_list[[i]],PPH_IC_list[[i]])
# PPH_MOTIF_ROLE<-rbind(PPH_MOTIF_ROLE,PPH_read[[1]])
# PPH_IC<-rbind(PPH_IC,PPH_read[[2]])
# }
# groups <- factor(group,levels = paste0("net",1:18))
#
# PPH_IC_dist <- rdist(PPH_IC, metric = "correlation")
# PPH_IC_dist <- PPH_IC_dist / max(PPH_IC_dist)
# PPH_IC_dist_beta <-betadisper(PPH_IC_dist, groups, type = "centroid")$distances
#
# PPH_MOTIF_ROLE_dist <- rdist(PPH_MOTIF_ROLE, metric = "correlation")
# PPH_MOTIF_ROLE_dist <- PPH_MOTIF_ROLE_dist / max(PPH_MOTIF_ROLE_dist)
# PPH_MOTIF_ROLE_dist_beta <-betadisper(PPH_MOTIF_ROLE_dist, groups, type = "centroid")$distances
#
# PPH_micro.vs.meso <-
# data.frame(type = c(rep(c("micro", "meso"), each = length(group))),
# dist_cen = c(PPH_IC_dist_beta, PPH_MOTIF_ROLE_dist_beta))
# PPH_micro.vs.meso$type <- factor(PPH_micro.vs.meso$type,levels = c("micro","meso"))
#
# #Wilcoxon test
# pph_wilcox <- wilcox.test(PPH_micro.vs.meso[1:184, 2], PPH_micro.vs.meso[185:368, 2], paired = T)
# pph_wilcox$statistic
# pph_wilcox$p.value
# #plotting
# ggplot(PPH_micro.vs.meso,aes(type,dist_cen))+
# geom_half_boxplot(aes(fill=factor(type)),outlier.shape = NA, width = .6,errorbar.draw = F)+
# theme_test()+
# scale_fill_manual(values=c("#5390fe","#20b2aa"))+
# geom_half_point(side = "r",
# shape=18,
# alpha = 0.6,size=1)+
# annotate("text", label = "paste(bold(italic(p)), \" < 0.001 \")",
# x = 1.5, y = 0.74, size = 3.2, colour = "black",parse=T)+
# labs(x="",y="Distance to centroid (PPH)")+
# theme(legend.position="none") + theme(axis.title = element_text(size = 8, face = "bold"),
# axis.text = element_text(size = 10,color = "black"),
# axis.text.x = element_text(size = 10, face = "bold"),
# axis.text.y = element_text(size = 10))
## ----echo = TRUE, eval = FALSE------------------------------------------------
# load("./data/PHP_Network.rda")
# #interconnection pattern
# PHP_IP <-
# t(as.data.frame(lapply(PHP_Network, function(x) {
# c(poc(x)[1],coid(x), cois(x), pc(x), hc(x))
# })))
# rownames(PHP_IP) <- paste0("net", seq = 1:31)
# PHP_IP[is.na(PHP_IP)] <- 0
# PHP_IP_dist <- rdist(PHP_IP, metric = "correlation")
# PHP_IP_dist <- PHP_IP_dist / max(PHP_IP_dist)
# PHP_IP_dist_beta <-betadisper(PHP_IP_dist, group = rep("net", 31), type = "centroid")$distances
#
#
# #interconnection motif
# PHP_MOTIF <-
# t(as.data.frame(lapply(PHP_Network, function(x) {
# icmotif_count(x)[,2]
# })))
# rownames(PHP_MOTIF) <- paste0("net", seq = 1:31)
# PHP_MOTIF_dist <- rdist(PHP_MOTIF, metric = "correlation")
# PHP_MOTIF_dist <- PHP_MOTIF_dist / max(PHP_MOTIF_dist)
# PHP_MOTIF_dist_beta <-betadisper(PHP_MOTIF_dist, group = rep("net", 31), type = "centroid")$distances
#
# PHP_macro.vs.meso <-
# data.frame(
# type = c(rep(c("macro", "meso"), each = 31)),
# dist_cen = c(PHP_IP_dist_beta, PHP_MOTIF_dist_beta)
# )
# PHP_macro.vs.meso$type <- factor(PHP_macro.vs.meso$type)
#
# #Wilcoxon test
# php_wilcox <-
# wilcox.test(PHP_macro.vs.meso[1:31, 2], PHP_macro.vs.meso[32:62, 2], paired = T)
# php_wilcox$statistic
# php_wilcox$p.value
# #plotting
# ggplot(PHP_macro.vs.meso,aes(type,dist_cen))+
# geom_half_boxplot(aes(fill=type),
# outlier.shape = NA,nudge =0, width = .6,errorbar.draw = F)+
# theme_test()+
# geom_half_point(side = "r",shape=18,
# alpha = 0.6,size=1)+
# scale_fill_manual(values=c("#ff8099","#20b2aa"))+
# labs(x="",y="Distance to centroid (PHP)")+
# stat_compare_means(method="wilcox.test",paired = T,size=5,vjust = 0.5,hjust=-0.3)+
# theme(legend.position="none") + theme(axis.title = element_text(size = 8, face = "bold"),
# axis.text = element_text(size = 10,color = "black"),
# axis.text.x = element_text(size = 10, face = "bold"),
# axis.text.y = element_text(size = 10))
## ----echo = TRUE, eval = FALSE------------------------------------------------
# #interconnection motif role
# PHP_MOTIF_ROLE_list<-lapply(PHP_Network, function(x){icmotif_role(x)})
# #interconnection centrality
# PHP_IC_list<-lapply(PHP_Network, function(x){node_icc(x)})
#
# re_adjust<-function(role,cen){
# spe<-rownames(role)[which(rowSums(role)!=0)]
# cen<-cen[,-1]
# cen<-apply(cen, 1, function(x){as.numeric(x)})%>%t()
# return(list(role[spe,],cen[spe,],length(spe)))
# }
# group <- NULL
# PHP_MOTIF_ROLE <- NULL
# PHP_IC <- NULL
# for(i in 1:31){
# l <- nrow(PHP_IC_list[[i]])
# group <- c(group,rep(paste0("net",i),l))
# PHP_read<-re_adjust(PHP_MOTIF_ROLE_list[[i]],PHP_IC_list[[i]])
# PHP_MOTIF_ROLE<-rbind(PHP_MOTIF_ROLE,PHP_read[[1]])
# PHP_IC<-rbind(PHP_IC,PHP_read[[2]])
# }
# groups <- factor(group,levels = paste0("net",1:31))
#
#
# PHP_IC_dist <- rdist(PHP_IC, metric = "correlation")
# PHP_IC_dist <- PHP_IC_dist / max(PHP_IC_dist)
# PHP_IC_dist_beta <-betadisper(PHP_IC_dist, groups, type = "centroid")$distances
#
# PHP_MOTIF_ROLE_dist <- rdist(PHP_MOTIF_ROLE, metric = "correlation")
# PHP_MOTIF_ROLE_dist <- PHP_MOTIF_ROLE_dist / max(PHP_MOTIF_ROLE_dist)
# PHP_MOTIF_ROLE_dist_beta <-betadisper(PHP_MOTIF_ROLE_dist, groups, type = "centroid")$distances
#
# PHP_micro.vs.meso <-
# data.frame(type = c(rep(c("micro", "meso"), each = length(group))),
# dist_cen = c(PHP_IC_dist_beta, PHP_MOTIF_ROLE_dist_beta))
# PHP_micro.vs.meso$type <- factor(PHP_micro.vs.meso$type,levels = c("micro","meso"))
#
# #Wilcoxon test
# PHP_wilcox <- wilcox.test(PHP_micro.vs.meso[1:927, 2], PHP_micro.vs.meso[928:1854, 2], paired = T)
# PHP_wilcox$statistic
# PHP_wilcox$p.value
# #plotting
# ggplot(PHP_micro.vs.meso,aes(type,dist_cen))+
# geom_half_boxplot(aes(fill=factor(type)),outlier.shape = NA, width = .6,errorbar.draw = F)+
# theme_test()+
# scale_fill_manual(values=c("#5390fe","#20b2aa"))+
# geom_half_point(side = "r",
# shape=18,
# alpha = 0.6,size=1)+
# annotate("text", label = "paste(bold(italic(p)), \" < 0.001 \")",
# x = 1.5, y = 0.74, size = 3.2, colour = "black",parse=T)+
# labs(x="",y="Distance to centroid (PHP)")+
# theme(legend.position="none") + theme(axis.title = element_text(size = 8, face = "bold"),
# axis.text = element_text(size = 10,color = "black"),
# axis.text.x = element_text(size = 10, face = "bold"),
# axis.text.y = element_text(size = 10))
## ----echo=F,eval = T,out.width = "80%",fig.align = 'center'-------------------
knitr::include_graphics("../man/figure/marco_vs_micro_vs_meso.png")
## ----echo=T,eval = F----------------------------------------------------------
# library(ILSM)
# library(dplyr)
# library(vegan)
# library(ggalt)
#
# data(PPH_Network)
# data(PHP_Network)
# The_structure_motif <-
# rbind(
# lapply(PHP_Network, function(z) {
# ILSM::icmotif_count(z)
# }) %>% data.frame() %>% t(),
# lapply(PPH_Network, function(z) {
# ILSM::icmotif_count(z)
# }) %>% data.frame() %>% t()
# )
#
# rownames(The_structure_motif)<-c(paste0("PHP",seq=1:31),paste0("PPH",seq=1:18))
#
# The_structure_motif_nmds<-The_structure_motif%>%vegdist(method = "bray")%>%metaMDS(k=2)
#
# The_structure_motif_sample<-The_structure_motif_nmds$points%>%data.frame()
# The_structure_motif_sample$name<-c(rep("PHP",31),rep("PPH",18))
# colnames(The_structure_motif_sample)[1:2]<-c("NMDS1","NMDS2")
#
# The_structure_motif_nmds$stress
#
# ggplot(The_structure_motif_sample,aes(NMDS1,NMDS2,color=name))+
# geom_point(size=1)+
# theme_test()+
# theme(#panel.border=element_rect(linewidth = 1),
# axis.title = element_text(size = 9),axis.text = element_text(size = 9),legend.key.size = unit(4,"mm"),
# legend.text = element_text(size=6,face = "bold"),legend.position.inside = c( .94 , .86 ))+
# geom_encircle(aes(NMDS1,NMDS2,group = name,fill=name),size=0.2,expand=0,spread=0,alpha =0.2,s_shape=1)+
# annotate("text", label = "paste(bold(Adonis),\": \" ,italic(R)^2, \" = 0.085*** \" )",
# x = -3.2, y = -1.7, size = 3, colour = "black",parse=T)+
# annotate("text", label = "paste(bold(Anosim) , \": \",italic(R), \" = 0.173** \" )",
# x = -3.25, y = -1.45, size = 3, colour = "black",parse=T)+
# annotate("text", label = "paste(bold(Stress) , \" = 0.043\")",
# x = -3.66, y = -1.15, size = 3, colour = "black",parse=T)+
# scale_fill_discrete(name="")+scale_color_discrete(name="")
#
## ----echo=F,eval = T,out.width = "80%",fig.align = 'center'-------------------
knitr::include_graphics("../man/figure/PPHvsPHP.png")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.