View source: R/model_selection.R
model_selection | R Documentation |
Model selection for sub-model outputs in IMIX, this step is to calculate the AIC or BIC values for one model
model_selection( loglik, n, g = 4, d = 2, modelname = c("IMIX_ind", "IMIX_ind_unrestrict", "IMIX_cor_twostep", "IMIX_cor", "IMIX_cor_restrict") )
loglik |
Full log likelihood, result output from IMIX or a sub model in IMIX: 'Full MaxLogLik final' |
n |
Total number of genes |
g |
Number of components |
d |
Number of data types |
modelname |
The model name, default is IMIX_ind |
AIC/BIC values of the target model
Ziqiao Wang and Peng Wei. 2020. “IMIX: a multivariate mixture model approach to association analysis through multi-omics data integration.” Bioinformatics. <doi:10.1093/bioinformatics/btaa1001>.
# First load the data data("data_p") # Specify the initial values mu_input <- c(0,3,0,3) sigma_input <- rep(1,4) p_input <- rep(0.5,4) # Fit the IMIX model test1 <- IMIX(data_input = data_p,data_type = "p",mu_ini = mu_input,sigma_ini = sigma_input, p_ini = p_input,alpha = 0.1,model_selection_method = "AIC") # Calculate the AIC and BIC values for IMIX_ind with two data types and four components model_selection(test1$IMIX_ind$`Full MaxLogLik final`, n=dim(test1$IMIX_ind$`posterior prob`)[1],g=4,d=2, "IMIX_ind")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.