Nothing
#' Fitted \code{joint} object
#'
#' @description An object of class \code{INLAjoint} returned by the \code{joint}
#' function that fits a joint model to multivariate longitudinal and
#' time-to-event data. The following functions can apply to objects of this
#' class: \code{plot}, \code{print}, \code{summary} and \code{priors.used}.
#'
#' @keywords joint model multivariate longitudinal survival competing risks
#' @seealso \code{\link{joint}}.
#' @return A list with the following components: \describe{
#' \item{\code{names.fixed}}{a vector with the name of the fixed effects of
#' the model. The corresponding submodel is indicated by the suffix including
#' a letter and a number ("L" for longitudinal and "S" for survival).}
#' \item{\code{summary.fixed}}{summary statistics for the fixed effects of
#' the model. The summary statistics sorted by longitudinal and
#' survival components are available by applying the \code{summary} function
#' to the \code{INLAjoint} object.}
#' \item{\code{summary.fixed}}{marginals for the fixed effects of the model.}
#' \item{\code{mlik}}{log marginal-likelihood.}
#' \item{\code{cpo}}{Conditional Predictive Ordinate.}
#' \item{\code{gcpo}}{Group-Conditional Predictive Ordinate.}
#' \item{\code{po}}{Predictive ordinate.}
#' \item{\code{waic}}{Widely applicable Bayesian information criterion}
#' \item{\code{model.random}}{a vector with the name of the random parameters of
#' the model, possibly including the following components: \describe{
#' \item{\code{RW1 model and RW2 model}}{Random walk of order 1 or 2
#' corresponding to Bayesian smoothing splines for the baseline hazard risk}
#' \item{\code{IID model}}{Univariate random effect.}
#' \item{\code{IIDKD model}}{Multivariate random effects.}
#' \item{\code{Copy}}{association parameter.}}}
#' \item{\code{summary.random}}{summary statistics for the random parameters of the model.}
#' \item{\code{marginals.random}}{marginals for the random parameters of the model.}
#' \item{\code{size.random}}{size of the random parameters of the model.}
#' \item{\code{summary.linear.predictor}}{summary statistics of the linear predictors.}
#' \item{\code{marginals.linear.predictor}}{marginals for the linear predictors.}
#' \item{\code{summary.fitted.values}}{summary statistics of the fitted values.}
#' \item{\code{marginals.fitted.values}}{marginals for the fitted values.}
#' \item{\code{size.linear.predictor}}{size of the linear predictors.}
#' \item{\code{summary.hyperpar}}{summary statistics for the hyperparameters of
#' the model. The summary statistics sorted by longitudinal and
#' survival components are available by applying the \code{summary} function
#' to the \code{INLAjoint} object. Particularly, this is the raw output of INLA
#' and therefore the precision of the residual errors and baseline hazard functions
#' hyperparameters are provided. Similarly, the Cholesky matrix is given for the
#' random-effects. The summary function can easily return either variance and covariance
#' or standard deviations and correlations for all these hyperparameters.}
#' \item{\code{marginals.hyperpar}}{marginals for the hyperparameters of the model.}
#' \item{\code{internal.summary.hyperpar}}{summary of the internal hyperparameters,
#' this is similar to the summary of the hyperparameters but here they are provided as used
#' for the computations (logarithm scale for residual error and baseline risk hyperparameters).}
#' \item{\code{internal.marginals.hyperpar}}{marginals for the internal hyperparameters of the model.}
#' \item{\code{misc}}{miscellaneous (as provided in the INLA output).}
#' \item{\code{dic}}{Deviance Information Criterion.}
#' \item{\code{mode}}{.}
#' \item{\code{joint.hyper}}{.}
#' \item{\code{nhyper}}{.}
#' \item{\code{version}}{Version of INLA.}
#' \item{\code{cpu.used}}{Computation time of INLA.}
#' \item{\code{all.hyper}}{.}
#' \item{\code{.args}}{.}
#' \item{\code{call}}{INLA call.}
#' \item{\code{selection}}{information about parameters for sampling with inla.rjmarginal.}
#' \item{\code{cureVar}}{informations about cure fraction submodel for mixture cure survival models.}
#' \item{\code{variant}}{information about variant for Weibull baseline hazards.}
#' \item{\code{SurvInfo}}{some information about survival submodels (names of event
#' indicator and event time variables as well as baseline hazard).}
#' \item{\code{famLongi}}{list of distributions for the longitudinal markers.}
#' \item{\code{corLong}}{boolean indicating if random effects are correlated accross markers.}
#' \item{\code{control.link}}{informations about link function (1=default).}
#' \item{\code{longOutcome}}{name of longitudinal outcomes.}
#' \item{\code{survOutcome}}{name of survival outcomes.}
#' \item{\code{assoc}}{vector with names of all association parameters (longi-surv).}
#' \item{\code{id}}{name of the id variable.}
#' \item{\code{timeVar}}{name of time variable.}
#' \item{\code{range}}{information about range of X-axis values for non-linear associations.}
#' \item{\code{REstruc}}{names of the grouped random effects for the longitudinal markers.}
#' \item{\code{mat_k}}{contains the list of random effects covariance matrices when they are
#' fixed as they are not part of the estimated parameters (used for displaying them in summary).}
#' \item{\code{fixRE}}{list of the size of number of groups of random effects, each element is a
#' boolean indicating if the random effects of the group is fixed (TRUE) or estimated (FALSE).}
#' \item{\code{lonFacChar}}{list of factors and character covariates included in the longitudinal
#' submodels to keep track of modalities (used internally when doing predictions to reconstruct
#' categorical covariates).}
#' \item{\code{survFacChar}}{same as lonFacChar but for survival submodels.}
#' \item{\code{corRE}}{list indicating if groups of random effects are correlated within
#' longitudinal submodels.}
#' \item{\code{basRisk}}{list of the baseline risk used for each survival submodel.}
#' \item{\code{priors_used}}{informations about priors used in the model, internally used
#' to display priors in plots (with argument priors=TRUE in the call of the plot function).
#' Note that priors can also be displayed with the function priors.used() applied to an
#' INLAjoint object.}
#' \item{\code{dataLong}}{name of the longitudinal dataset.}
#' \item{\code{dataSurv}}{name of the survival dataset.}
#' }
"INLAjoint.object" <- NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.