This is a R package to implement certain spatial and spatio-temporal
models, including some of the spatio-temporal models proposed
here.
It uses the cgeneric
interface in the INLA package, to implement
models by writing C
code to build the precision matrix compiling it so
that INLA can use it internally.
some of the models presented in A diffusion-based spatio-temporal extension of Gaussian Matérn fields (2024). Finn Lindgren, Haakon Bakka, David Bolin, Elias Krainski and Håvard Rue. SORT 48 (1) January-June 2024, 3-66. (https://www.idescat.cat/sort/sort481/48.1.1.Lindgren-etal.pdf)
the barrier (and transparent barriers) model proposed in https://doi.org/10.1016/j.spasta.2019.01.002
Please check here
The ‘INLA’ package is a suggested one, but you will need it for actually fitting a model. You can install it with
install.packages("INLA",repos=c(getOption("repos"),INLA="https://inla.r-inla-download.org/R/testing"), dep=TRUE)
You can install the current CRAN version of INLAspacetime:
install.packages("INLAspacetime")
You can install the latest version of INLAspacetime from GitHub with
## install.packages("remotes")
remotes::install_github("eliaskrainski/INLAspacetime", build_vignettes=TRUE)
Simulate some fake data.
set.seed(1)
n <- 5
dataf <- data.frame(
s1 = runif(n, -1, 1),
s2 = runif(n, -1, 1),
time = runif(n, 1, 4),
y = rnorm(n, 0, 1))
str(dataf)
#> 'data.frame': 5 obs. of 4 variables:
#> $ s1 : num -0.469 -0.256 0.146 0.816 -0.597
#> $ s2 : num 0.797 0.889 0.322 0.258 -0.876
#> $ time: num 1.62 1.53 3.06 2.15 3.31
#> $ y : num -0.00577 2.40465 0.76359 -0.79901 -1.14766
Loading packages:
library(fmesher)
library(INLA)
library(INLAspacetime)
#> see more on https://eliaskrainski.github.io/INLAspacetime
Define spatial and temporal discretization meshes
smesh <- fm_mesh_2d(
loc = cbind(0,0),
max.edge = 5,
offset = 2)
tmesh <- fm_mesh_1d(
loc = 0:5)
Define the spacetime model object to be used
stmodel <- stModel.define(
smesh = smesh, ## spatial mesh
tmesh = tmesh, ## temporal mesh
model = '121', ## model, see the paper
control.priors = list(
prs = c(1, 0.1), ## P(spatial range < 1) = 0.1
prt = c(5, 0), ## temporal range fixed to 5
psigma = c(1, 0.1) ## P(sigma > 1) = 0.1
)
)
#> Warning in stModel.define(smesh = smesh, tmesh = tmesh, model = "121",
#> control.priors = list(prs = c(1, : Setting 'useINLAprecomp = FALSE' to use new
#> code.
Define a projector matrix from the spatial and temporal meshes to the data
Aproj <- inla.spde.make.A(
mesh = smesh,
loc = cbind(dataf$s1, dataf$s2),
group = dataf$time,
group.mesh = tmesh
)
Create a ‘fake’ column to be used as index. in the f()
term
dataf$st <- NA
Setting the likelihood precision (as fixed)
ctrl.lik <- list(
hyper = list(
prec = list(
initial = 10,
fixed = TRUE)
)
)
Combine a ‘fake’ index column with A.local
fmodel <- y ~ f(st, model = stmodel, A.local = Aproj)
Call the main INLA
function:
fit <- inla(
formula = fmodel,
data = dataf,
control.family = ctrl.lik)
Posterior marginal summaries for fixed effect and the model parameters that were not fixed.
fit$summary.fixed
#> mean sd 0.025quant 0.5quant 0.975quant mode
#> (Intercept) 0.693389 4.03265 -6.962331 0.5227188 9.417425 0.5550712
#> kld
#> (Intercept) 7.398472e-05
fit$summary.hyperpar
#> mean sd 0.025quant 0.5quant 0.975quant mode
#> Theta1 for st 1.199222 0.4918533 0.3653818 1.161539 2.277396 0.974993
#> Theta2 for st 1.435517 0.1710676 1.1031120 1.434032 1.776667 1.427752
library(inlabru)
Setting the observation (likelihood) model object
data_model <- bru_obs(
formula = y ~ .,
family = "gaussian",
control.family = ctrl.lik,
data = dataf)
Define the data model: the linear predictor terms
linpred <- ~ 1 +
field(list(space = cbind(s1, s2),
time = time),
model = stmodel)
Fitting
result <- bru(
components = linpred,
data_model)
Summary of the model parameters
result$summary.fixed
#> mean sd 0.025quant 0.5quant 0.975quant mode
#> Intercept 0.6690302 3.970182 -6.887199 0.509471 9.214066 0.5379221
#> kld
#> Intercept 5.683968e-05
result$summary.hyperpar
#> mean sd 0.025quant 0.5quant 0.975quant mode
#> Theta1 for field 1.190438 0.4868951 0.3623876 1.153809 2.256071 0.9726162
#> Theta2 for field 1.435268 0.1709839 1.1033563 1.433674 1.776580 1.4269195
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.