| methods | R Documentation |
model.For a given model object query the initial,
mu, log prior, graph or precision prec
can be evaluated/retrieved.
initial(model)
mu(model, theta)
prior(model, theta)
graph(model, optimize)
prec(model, theta, optimize)
## Default S3 method:
prec(model, ...)
## S4 method for signature 'Matrix'
vcov(object, ...)
## S3 method for class 'inla'
prec(model, ...)
model |
object to represent a model |
theta |
numeric vector.
For |
optimize |
logical indicating if it is to be returned only the elements and not as a sparse matrix. |
... |
additional arguments passed on |
object |
Matrix supposed to be a sparse precision matrix |
the result of the desired query of the 'cgeneric' model. 'graph' and 'prec' can be either a vector (if optimize = TRUE) or a sparse matrix.
initial(): Retrieve the initial model parameter(s)
mu(): Evaluate the model's mean
prior(): Evaluate the log-prior for a given theta
graph(): Retrieve the models' graph
prec(): Retrieve the precision for a given theta
prec(default): The default precision method
computes the inverse of the variance
vcov(Matrix): The vcov method for sparse matrices
prec(inla): Define the prec method for an inla output object
prior.cgeneric()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.