inst/shiny-server/ui/fv_stats_box.R

fv_heatmap_box <- function(width = 12, collapsible = T, collapsed = F) {
  box(title = HTML('<p style="font-size:120%;">Hypothesis Testing</p>'),
      width = width, solidHeader = T, status = "primary",
      collapsible = collapsible, collapsed = collapsed,
      sidebarPanel(
        width = 3,
        selectInput('FV_Stats.Overview.ID', 'Algorithms to compare', choices = NULL, 
                    selected = NULL, multiple = T),
        textInput('FV_Stats.Overview.Target', label = RT_TAR_LABEL),
        textInput('FV_Stats.Overview.Alpha', 
                  label = HTML('<p>Significe level \\(\\alpha\\)</p>'), 
                  value = 0.01),
        # numericInput('FV_Stats.Overview.Samples', 
        #              label = 'size of the bootstrap sample', 
        #              min = 1, max = 1000, step = 1, value = 0),
        hr(),
        selectInput('FV_Stats.Overview.TableFormat', label = 'Select the table format',
                    choices = supported_table_format, selected = supported_table_format[[1]]),
        downloadButton('FV_Stats.Overview.DownloadTable', label = 'Download the table'),
        hr(),
        selectInput('FV_Stats.Overview.Format', label = 'Select the figure format',
                    choices = supported_fig_format, selected = supported_fig_format[[1]]),
        downloadButton('FV_Stats.Overview.DownloadHeatmap', 
                       label = 'Download the heatmap')
        # downloadButton('FV_Stats.Overview.DownloadNetwork', 
        #                label = 'Download the network-graph', status = F)
        
      ),
      
      mainPanel(
        width = 9,
        HTML_P('The <b>Kolmogorov-Smirnov test</b> is performed on empirical CDFs of running times for each pair of 
                algorithms, in order to determine which algorithm gives a significantly 
                smaller running time distribution. The resulting p-values are arranged in a matrix, where
                each cell \\((i, j)\\) contains a p-value from the test with the alternative hypothesis:
                the running time of algorithm \\(i\\) is smaller (thus better) than that of \\(j\\).'),
        DT::dataTableOutput('FV_Stats.Overview.Pmatrix')
      ),
      
      fluidRow(
        column(
          width = 12,
          HTML('<div style="margin-top: 50px;"></div>'),
          HTML_P('Decisions of the test, based on the \\(p-\\) value matrix and the \\(\\alpha\\) value,
                  are visualized in a heatmap (<b>left</b>) and a network (<b>right</b>).
                  In each cell (row, column) of the heatmap, the alternative hypothesis is again:
                  the row algorithm has smaller (better) running time than the column. 
                  The color indicates:
                  <ul>
                    <li><font color="red">Red: A row is better than the column</font></li>
                    <li><font color="blue">Blue: A row is worse than the column</font></li>
                    <li><font color="grey">Gray: no significant distinction between the row and column</font></li>
                  </ul>
                  On the right subplot, the partial order resulted from the test is visualized as a network, 
                  where an arrow from algorithm \\(A\\) to \\(B\\) indicates \\(A\\) is siginicantly better than 
                  \\(B\\) with the specified \\(\\alpha\\) value.')
        )
      ),
      
      fluidRow(
        column(
          width = 6, align = 'center',
          HTML('<div style="margin-top: 30px;"></div>'),
          plotlyOutput.IOHanalyzer('FV_Stats.Overview.Heatmap', aspect_ratio = 1)
        ),
        column(
          width = 6, align = 'center',
          HTML('<div style="margin-top: 30px;"></div>'),
          plotOutput("FV_Stats.Overview.Graph", height = '70vh')
        )
      )
  )
}

fv_glicko2_box <- function(width = 12, collapsible = T, collapsed = T) {
  box(title = HTML('<p style="font-size:120%;">Glicko2-based ranking</p>'),
      width = width, solidHeader = T, status = "primary",
      collapsible = collapsible, collapsed = collapsed,
      sidebarPanel(
        width = 3,
        selectInput('FV_Stats.Glicko.ID', 'Algorithms to compare', choices = NULL, 
                    selected = NULL, multiple = T),
        selectInput('FV_Stats.Glicko.Funcid', 'Functions to use', choices = NULL, 
                    selected = NULL, multiple = T),
        selectInput('FV_Stats.Glicko.Dim', 'Dimensions to use', choices = NULL, 
                    selected = NULL, multiple = T),
        textInput('FV_Stats.Glicko.Nrgames', 
                  label = "Number of games per (function,dimension) pair", 
                  value = 25),
        actionButton('FV_Stats.Glicko.Create', 'Create / Update Ranking'),
        hr(),
        selectInput('FV_Stats.Glicko.Format', label = 'Select the figure format',
                    choices = supported_fig_format, selected = supported_fig_format[[1]]),
        
        downloadButton('FV_Stats.Glicko.Download', label = 'Download the figure'),
        hr(),
        selectInput('FV_Stats.Glicko.TableFormat', label = 'Select the table format',
                    choices = supported_table_format, selected = supported_table_format[[1]]),
        downloadButton('FV_Stats.Glicko.DownloadTable', label = 'Download the table')
      ),
      
      mainPanel(
        width = 9,
        HTML_P('The <b>Glicko2</b> This procedure ranks algorithms based on a glico2-procedure. 
                Every round, for every function and dimension of the datasetlist, 
                each pair of algorithms competes. This competition samples a random function value for the 
                provided runtime (maximum used among all algorithms). Whichever algorithm has the better
                function value wins the game. Then, from these games, the glico2-rating is used to determine the ranking.'),
        HTML_P("The chosen <b>budget values</b> per (function, dimension)-pair are as follows 
                 (double click an entry to edit it):"),
        DT::dataTableOutput("FV_Stats.Glicko.Targets"),
        hr(), 
        HTML_P("The results of the ranking are:"),
        plotlyOutput.IOHanalyzer("FV_Stats.Glicko.Candlestick"),
        DT::dataTableOutput('FV_Stats.Glicko.Dataframe')
      )
  )
}

Try the IOHanalyzer package in your browser

Any scripts or data that you put into this service are public.

IOHanalyzer documentation built on Oct. 21, 2021, 5:06 p.m.