IPEC-package: Root Mean Square Curvature Calculation

IPEC-packageR Documentation

Root Mean Square Curvature Calculation

Description

Calculates the RMS intrinsic and parameter-effects curvatures of a nonlinear regression model. The curvatures are global measures of assessing whether a model/data set combination is close-to-linear or not. See Bates and Watts (1980) and Ratkowsky and Reddy (2017) for details.

Details

The DESCRIPTION file: This package was not yet installed at build time.
Index: This package was not yet installed at build time.

Note

We are deeply thankful to Drs. Paul Gilbert and Jinlong Zhang for their invaluable help during creating this package. We also thank Dr. Kurt Hornik for his technical guidance in updating the package.

Author(s)

Peijian Shi [aut, cre], Peter Ridland [aut], David A. Ratkowsky [aut], Yang Li [aut]

Maintainer: Peijian Shi <pjshi@njfu.edu.cn>

References

Bates, D.M and Watts, D.G. (1988) Nonlinear Regression Analysis and its Applications. Wiley, New York. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1002/9780470316757")}

Ratkowsky, D.A. (1983) Nonlinear Regression Modeling: A Unified Practical Approach. Marcel Dekker, New York.

Ratkowsky, D.A. (1990) Handbook of Nonlinear Regression Models, Marcel Dekker, New York.

Ratkowsky, D.A. & Reddy, G.V.P. (2017) Empirical model with excellent statistical properties for describing temperature-dependent developmental rates of insects and mites. Ann. Entomol. Soc. Am. 110, 302-309. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1093/aesa/saw098")}

See Also

hessian in package numDeriv, jacobian in package numDeriv, rms.curv in package MASS

Examples

#### Example 1 ##################################################################################
graphics.off()
# The velocity of the reaction (counts/min^2) under different substrate concentrations 
#   in parts per million (ppm) (Page 269 of Bates and Watts 1988)

x1 <- c(0.02, 0.02, 0.06, 0.06, 0.11, 0.11, 0.22, 0.22, 0.56, 0.56, 1.10, 1.10)
y1 <- c(76, 47, 97, 107, 123, 139, 159, 152, 191, 201, 207, 200)

# Define the Michaelis-Menten model
MM <- function(theta, x){
    theta[1]*x / ( theta[2] + x )    
}

res0 <- fitIPEC( MM, x=x1, y=y1, ini.val=c(200, 0.05), 
                 xlim=c( 0, 1.5 ), ylim=c(0, 250), fig.opt=TRUE )
par1 <- res0$par
par1

res1 <- derivIPEC( MM, theta=par1, z=x1[1], method="Richardson",
                   method.args=list(eps=1e-4, d=0.11, 
                   zero.tol=sqrt(.Machine$double.eps/7e-7), r=6, v=2) )
res1

# To calculate curvatures
res2 <- curvIPEC( MM, theta=par1, x=x1, y=y1, alpha=0.05, method="Richardson",
                  method.args=list(eps=1e-4, d=0.11, 
                  zero.tol=sqrt(.Machine$double.eps/7e-7), r=6, v=2) ) 
res2

# To calculate bias
res3 <- biasIPEC(MM, theta=par1, x=x1, y=y1, tol= 1e-20)
res3


  set.seed(123)  
  res4 <- bootIPEC( MM, x=x1, y=y1, ini.val=par1,  
                    control=list(reltol=1e-20, maxit=40000), 
                    nboot=2000, CI=0.95, fig.opt=TRUE )
  res4
  set.seed(NULL)


# To calculate skewness
res5 <- skewIPEC(MM, theta=par1, x=x1, y=y1, tol= 1e-20)
res5
#################################################################################################


#### Example 2 ##################################################################################
graphics.off()
# Development data of female pupae of cotton bollworm (Wu et al. 2009)
# References:
#   Ratkowsky, D.A. and Reddy, G.V.P. (2017) Empirical model with excellent statistical 
#       properties for describing temperature-dependent developmental rates of insects  
#       and mites. Ann. Entomol. Soc. Am. 110, 302-309.
#   Wu, K., Gong, P. and Ruan, Y. (2009) Estimating developmental rates of 
#       Helicoverpa armigera (Lepidoptera: Noctuidae) pupae at constant and
#       alternating temperature by nonlinear models. Acta Entomol. Sin. 52, 640-650.

# 'x2' is the vector of temperature (in degrees Celsius)
# 'D2' is the vector of developmental duration (in d)
# 'y2' is the vector of the square root of developmental rate (in 1/d)

x2 <- seq(15, 37, by=1)
D2 <- c(41.24,37.16,32.47,26.22,22.71,19.01,16.79,15.63,14.27,12.48,
       11.3,10.56,9.69,9.14,8.24,8.02,7.43,7.27,7.35,7.49,7.63,7.9,10.03)
y2 <- 1/D2
y2 <- sqrt( y2 )

ini.val1 <- c(0.14, 30, 10, 40)

# Define the square root function of the Lobry-Rosso-Flandrois (LRF) model
sqrt.LRF <- function(P, x){
  ropt <- P[1]
  Topt <- P[2]
  Tmin <- P[3]
  Tmax <- P[4]
  fun0 <- function(z){
    z[z < Tmin] <- Tmin
    z[z > Tmax] <- Tmax
    return(z)
  }
  x <- fun0(x)
  if (Tmin >= Tmax | ropt <= 0 | Topt <= Tmin | Topt >= Tmax) 
    temp <- Inf
  if (Tmax > Tmin & ropt > 0 & Topt > Tmin & Topt < Tmax){
    temp <- sqrt( ropt*(x-Tmax)*(x-Tmin)^2/((Topt-Tmin)*((Topt-Tmin
      )*(x-Topt)-(Topt-Tmax)*(Topt+Tmin-2*x))) )  
  }
  return( temp )
}

myfun <- sqrt.LRF
xlab1 <- expression( paste("Temperature (", degree, "C)", sep="" ) )
ylab1 <- expression( paste("Developmental rate"^{1/2}, " (", d^{"-1"}, ")", sep="") )
resu0 <- fitIPEC( myfun, x=x2, y=y2, ini.val=ini.val1, xlim=NULL, ylim=NULL, 
                  xlab=xlab1, ylab=ylab1, fig.opt=TRUE, 
                  control=list(trace=FALSE, reltol=1e-20, maxit=50000) )
par2  <- resu0$par
par2

resu1 <- derivIPEC( myfun, theta=par2, z=x2[1], method="Richardson", 
                    method.args=list(eps=1e-4, d=0.11, 
                    zero.tol=sqrt(.Machine$double.eps/7e-7), r=6, v=2) )
resu1

# To calculate curvatures
resu2 <- curvIPEC( myfun, theta=par2, x=x2, y=y2, alpha=0.05, method="Richardson", 
                   method.args=list(eps=1e-4, d=0.11, 
                   zero.tol=sqrt(.Machine$double.eps/7e-7), r=6, v=2) ) 
resu2

# To calculate bias
resu3 <- biasIPEC(myfun, theta=par2, x=x2, y=y2, tol= 1e-20)
resu3


  set.seed(123)
  resu4 <- bootIPEC( myfun, x=x2, y=y2, ini.val=ini.val1,  
                     nboot=2000, CI=0.95, fig.opt=TRUE )
  resu4
  set.seed(NULL)


# To calculate skewness
resu5 <- skewIPEC(myfun, theta=par2, x=x2, y=y2, tol= 1e-20)
resu5
#################################################################################################


#### Example 3 ##################################################################################
graphics.off()
# Height growth data of four species of bamboo (Gramineae: Bambusoideae)
# Reference(s):
# Shi, P., Fan, M., Ratkowsky, D.A., Huang, J., Wu, H., Chen, L., Fang, S. and 
#     Zhang, C. (2017) Comparison of two ontogenetic growth equations for animals and plants. 
#     Ecol. Model. 349, 1-10.

data(shoots)
# Choose a species
# 1: Phyllostachys iridescens; 2: Phyllostachys mannii; 
# 3: Pleioblastus maculatus; 4: Sinobambusa tootsik.
# 'x3' is the vector of the investigation times from a specific starting time of growth
# 'y3' is the vector of the aboveground height values of bamboo shoots at 'x3' 

ind <- 4
x3  <- shoots$x[shoots$Code == ind]
y3  <- shoots$y[shoots$Code == ind] 

# Define the beta sigmoid model (bsm)
bsm <- function(P, x){
  P  <- cbind(P)
  if(length(P) !=4 ) {stop("The number of parameters should be 4!")}
  ropt <- P[1]
  topt <- P[2]
  tmin <- P[3]
  tmax <- P[4]
  tailor.fun <- function(x){
    x[x < tmin] <- tmin
    x[x > tmax] <- tmax
    return(x)
  }
  x <- tailor.fun(x)   

  ropt*(x-tmin)*(x-2*tmax+topt)/(topt+tmin-2*tmax)*(
    (x-tmin)/(topt-tmin) )^((topt-tmin)/(tmax-topt)) 
}

# Define the simplified beta sigmoid model (simp.bsm)
simp.bsm <- function(P, x, tmin=0){
  P  <- cbind(P)  
  ropt  <- P[1]
  topt  <- P[2]
  tmax  <- P[3]
  tailor.fun <- function(x){
    x[x < tmin] <- tmin
    x[x > tmax] <- tmax
    return(x)
  }
  x <- tailor.fun(x)   
  ropt*(x-tmin)*(x-2*tmax+topt)/(topt+tmin-2*tmax)*
       ((x-tmin)/(topt-tmin))^((topt-tmin)/(tmax-topt))   
}

# For the original beta sigmoid model
ini.val2 <- c(40, 30, 5, 50)
xlab2    <- "Time (d)"
ylab2    <- "Height (cm)"

re0 <- fitIPEC( bsm, x=x3, y=y3, ini.val=ini.val2, xlim=NULL, ylim=NULL, 
                xlab=xlab2, ylab=ylab2, fig.opt=TRUE, 
                control=list(trace=FALSE, reltol=1e-20, maxit=50000) )
par3 <- re0$par
par3

re1 <- derivIPEC( bsm, theta=par3, x3[15], method="Richardson", 
                  method.args=list(eps=1e-4, d=0.11, zero.tol=
                  sqrt(.Machine$double.eps/7e-7), r=6, v=2) )
re1

re2 <- curvIPEC( bsm, theta=par3, x=x3, y=y3, alpha=0.05, method="Richardson", 
                 method.args=list(eps=1e-4, d=0.11, zero.tol=
                 sqrt(.Machine$double.eps/7e-7), r=6, v=2) ) 
re2

re3 <- biasIPEC( bsm, theta=par3, x=x3, y=y3, tol= 1e-20 )
re3


  re4 <- bootIPEC( bsm, x=x3, y=y3, ini.val=ini.val2,  
                   control=list(trace=FALSE, reltol=1e-20, maxit=50000),
                   nboot=2000, CI=0.95, fig.opt=TRUE, fold=3.5 )
  re4


re5 <- skewIPEC( bsm, theta=par3, x=x3, y=y3, tol= 1e-20 )
re5

# For the simplified beta sigmoid model 
#  (in comparison with the original beta sigmoid model)
ini.val7 <- c(40, 30, 50)

RESU0 <- fitIPEC( simp.bsm, x=x3, y=y3, ini.val=ini.val7, 
                  xlim=NULL, ylim=NULL, xlab=xlab2, ylab=ylab2, 
                  fig.opt=TRUE, control=list(trace=FALSE, reltol=1e-20, maxit=50000) )
par7  <- RESU0$par
par7

RESU1 <- derivIPEC( simp.bsm, theta=par7, x3[15], method="Richardson", 
                    method.args=list(eps=1e-4, d=0.11, 
                    zero.tol=sqrt(.Machine$double.eps/7e-7), r=6, v=2) )
RESU1

RESU2 <- curvIPEC( simp.bsm, theta=par7, x=x3, y=y3, alpha=0.05, method="Richardson", 
                   method.args=list(eps=1e-4, d=0.11, 
                   zero.tol=sqrt(.Machine$double.eps/7e-7), r=6, v=2) ) 
RESU2

RESU3 <- biasIPEC( simp.bsm, theta=par7, x=x3, y=y3, tol= 1e-20 )
RESU3


  set.seed(123)
  RESU4 <- bootIPEC( simp.bsm, x=x3, y=y3, ini.val=ini.val7,  
                     control=list(trace=FALSE, reltol=1e-20, maxit=50000),
                     nboot=2000, CI=0.95, fig.opt=TRUE, fold=3.5 )
  RESU4
  set.seed(NULL)


RESU5 <- skewIPEC( simp.bsm, theta=par7, x=x3, y=y3, tol= 1e-20 )
RESU5
##################################################################################################


#### Example 4 ###################################################################################
# Data on biochemical oxygen demand (BOD; Marske 1967)
# References:
# Pages 56, 255 and 271 in Bates and Watts (1988)
# Carr, N.L. (1960) Kinetics of catalytic isomerization of n-pentane. Ind. Eng. Chem.
#     52, 391-396.   

graphics.off()
data(isom)
Y <- isom[,1]
X <- isom[,2:4]

# There are three independent variables saved in matrix 'X' and one response variable (Y)
# The first column of 'X' is the vector of partial pressure of hydrogen
# The second column of 'X' is the vector of partial pressure of n-pentane
# The third column of 'X' is the vector of partial pressure of isopentane
# Y is the vector of experimental reaction rate (in 1/hr)

isom.fun <- function(theta, x){
  x1     <- x[,1]
  x2     <- x[,2]
  x3     <- x[,3]
  theta1 <- theta[1]
  theta2 <- theta[2]
  theta3 <- theta[3]
  theta4 <- theta[4]
  theta1*theta3*(x2-x3/1.632) / ( 1 + theta2*x1 + theta3*x2 + theta4*x3 )
}

ini.val8 <- c(35, 0.1, 0.05, 0.2)
cons1    <- fitIPEC( isom.fun, x=X, y=Y, ini.val=ini.val8, control=list(
                     trace=FALSE, reltol=1e-20, maxit=50000) )
par8     <- cons1$par 
cons2    <- curvIPEC( isom.fun, theta=par8, x=X, y=Y, alpha=0.05, method="Richardson", 
                      method.args=list(eps=1e-4, d=0.11, 
                      zero.tol=sqrt(.Machine$double.eps/7e-7), r=6, v=2)) 
cons2
cons3    <- biasIPEC( isom.fun, theta=par8, x=X, y=Y, tol= 1e-20 )
cons3


  set.seed(123)
  cons4 <- bootIPEC( isom.fun, x=X, y=Y, ini.val=ini.val8,  
                     control=list(trace=FALSE, reltol=1e-20, maxit=50000),
                     nboot=2000, CI=0.95, fig.opt=TRUE, fold=10000 )
  cons4
  set.seed(NULL)


cons5    <- skewIPEC( isom.fun, theta=par8, x=X, y=Y, tol= 1e-20 )
cons5
##################################################################################################

IPEC documentation built on Nov. 2, 2023, 6:14 p.m.