SimGraDat: Simulate Incomplete Data for Gaussian Graphical Models

Description Usage Arguments Value Author(s) References Examples

View source: R/SimGraDat.R

Description

Simulate incomplete data with a band structure, which can be used in GraphIRO(data,...) for estimating the structure of the Gaussian graphical network.

Usage

1
SimGraDat(n = 200, p = 100, type = "band", rate = 0.1)

Arguments

n

Number of observations, default of 200.

p

Number of covariates, default of 100.

type

type=="band" which denotes the band structure, with precision matrix

C_{i,j}=≤ft\{\begin{array}{ll} 0.5,&\textrm{if $≤ft| j-i \right|=1, i=2,...,(p-1),$}\\ 0.25,&\textrm{if $≤ft| j-i \right|=2, i=3,...,(p-2),$}\\ 1,&\textrm{if $i=j, i=1,...,p,$}\\ 0,&\textrm{otherwise.} \end{array}\right.

rate

Missing rate, the default value is 0.1.

Value

data

nxp Gaussian distributed data with missing.

A

pxp adjacency matrix used for generating data.

Author(s)

Bochao Jiajbc409@ufl.edu and Faming Liang

References

Liang, F., Song, Q. and Qiu, P. (2015). An Equivalent Measure of Partial Correlation Coefficients for High Dimensional Gaussian Graphical Models. J. Amer. Statist. Assoc., 110, 1248-1265.

Liang, F. and Zhang, J. (2008) Estimating FDR under general dependence using stochastic approximation. Biometrika, 95(4), 961-977.

Liang, F., Jia, B., Xue, J., Li, Q., and Luo, Y. (2018). An Imputation Regularized Optimization Algorithm for High-Dimensional Missing Data Problems and Beyond. Submitted to Journal of the Royal Statistical Society Series B.

Examples

1
2
library(IROmiss)
SimGraDat(n = 200, p = 100, type = "band", rate = 0.1)

IROmiss documentation built on March 26, 2020, 5:56 p.m.