Prob.model | R Documentation |
Based on the given model, return the correct probabilities of a single examinne with ability X answering each item.
Prob.model(X, Model, Par.est0, D=1.702)
X |
A |
Model |
A
These parameter labels are capitalized in program for emphasis. |
Par.est0 |
A
Please note these capitalized parameter lables are transformed from the Model section. |
D |
A single |
A numeric
consists of the correct probabilities of a single examinne with ability X answering each item.
Barton, M. A., & Lord, F. M. (1981). An upper asymptote for the three-parameter logistic item response model. ETS Research Report Series, 1981(1), 1-8. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1002/j.2333-8504.1981.tb01255.x")}
Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee's ability. In F. M. Lord & M. R. Novick (Eds.), Statistical theories of mental test scores (pp. 395-479). MA: Adison-Wesley.
San Martín, E., Del Pino, G., & De Boeck, P. (2006). IRT models for ability-based guessing. Applied Psychological Measurement, 30(3), 183-203. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1177/0146621605282773")}
#Obtain the correct probabilities of five 3PL model items when theta=1.2 and D=1.702.
library(IRTBEMM)
th=1.2 #Examinee's ability parameter theta
A=c(1.5, 2, 0.5, 1.2, 0.4) #item discrimination parameters
B=c(-0.5, 0, 1.5, 0.3, 2.8) #item difficulty parameters
C=c(0.1, 0.2, 0.3, 0.15, 0.25) #item pseudo guessing parameters
Par3PL=list(A=A, B=B, C=C) #Create a list for 3PL
P.3pl=Prob.model(X=th, Model='3PL', Par.est0=Par3PL) #Obtain the 3PL probabilities
#Obtain the correct probabilities of five 4PL model items when theta=1.2 and D=1.
S=c(0.3, 0.1, 0.13, 0.09, 0.05) #item pseudo slipping parameters
Par4PL=list(A=A, B=B, C=C, S=S) #Create a list for 4PL
P.4pl=Prob.model(X=th, Model='4PL', Par.est0=Par4PL, D=1) #Obtain the 4PL probabilities
#Obtain the correct probabilities of three 1PLG model items when theta=0.3.
th=0.3
Beta=c(0.8, -1.9, 2.4)
Gamma=c(-1.31, -0.89, -0.18)
Par1PLG=list(Beta=Beta, Gamma=Gamma) #Create a list for 1PLG
P.1plg=Prob.model(X=th, Model='1PLG', Par.est0=Par1PLG) #Obtain the 1PLG probabilities
#Obtain the correct probabilities of three 1PLAG model items when theta=0.3.
Alpha=0.2
Par1PLAG=list(Alpha=Alpha, Beta=Beta, Gamma=Gamma) #Create a list for 1PLAG
P.1plag=Prob.model(X=th, Model='1PLAG', Par.est0=Par1PLAG) #Obtain the 1PLAG probabilities
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.