View source: R/constrained_IRT.R
M_constrained_irt | R Documentation |
This function allows you to run the IRT model.
M_constrained_irt(
Y,
d,
M = NULL,
theta_fix = NULL,
which_fix = NULL,
nburn = 1000,
nsamp = 1000,
thin = 10,
learn_Sigma = TRUE,
learn_Omega = FALSE,
hyperparameters = list(),
display_progress = TRUE
)
Y |
a N x K matrix of responses given by N respondents to K items. Can contain missing values. |
d |
an integer specifying the number of latent dimensions. |
M |
a list of K d x d matrices (default=NULL). |
theta_fix |
a matrix with d columns containing the values of the latent dimensions for respondents that have pre-specified latent factors. |
which_fix |
a vector containing the indices of the respondents for which latent factors have been fixed. |
nburn |
an integer specifying the number of burn-in MCMC iterations. |
nsamp |
an integer specifying the number of sampling MCMC iterations. |
thin |
an integer specifying the number of thinning MCMC samples. |
learn_Sigma |
a Boolean specifying whether a covariance matrix for the latent factors should be learned. |
learn_Omega |
a Boolean specifying whether a covariance matrix for the latent loadings should be learned. |
hyperparameters |
a list of hyperparameters for the model. |
display_progress |
a Boolean specifying whether a progress bar should be displayed. |
A list containing the following components:
lambda |
An array of dimension (K x d x nsamp/thin) containing posterior samples of item discrimination parameters. |
b |
A matrix of dimension (K x nsamp/thin) containing posterior samples of item difficulty parameters. |
theta |
An array of dimension (N x d x nsamp/thin) containing posterior samples of respondent latent trait values. |
Sigma |
An array of dimension (d x d x nsamp/thin) containing posterior samples of the covariance matrix of latent traits (only if learn_Sigma=TRUE). |
Omega |
An array of dimension (d x d x nsamp/thin) containing posterior samples of the covariance matrix of item loadings (only if learn_Omega=TRUE). |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.