M_constrained_irt: M_constrained_irt

View source: R/constrained_IRT.R

M_constrained_irtR Documentation

M_constrained_irt

Description

This function allows you to run the IRT model.

Usage

M_constrained_irt(
  Y,
  d,
  M = NULL,
  theta_fix = NULL,
  which_fix = NULL,
  nburn = 1000,
  nsamp = 1000,
  thin = 10,
  learn_Sigma = TRUE,
  learn_Omega = FALSE,
  hyperparameters = list(),
  display_progress = TRUE
)

Arguments

Y

a N x K matrix of responses given by N respondents to K items. Can contain missing values.

d

an integer specifying the number of latent dimensions.

M

a list of K d x d matrices (default=NULL).

theta_fix

a matrix with d columns containing the values of the latent dimensions for respondents that have pre-specified latent factors.

which_fix

a vector containing the indices of the respondents for which latent factors have been fixed.

nburn

an integer specifying the number of burn-in MCMC iterations.

nsamp

an integer specifying the number of sampling MCMC iterations.

thin

an integer specifying the number of thinning MCMC samples.

learn_Sigma

a Boolean specifying whether a covariance matrix for the latent factors should be learned.

learn_Omega

a Boolean specifying whether a covariance matrix for the latent loadings should be learned.

hyperparameters

a list of hyperparameters for the model.

display_progress

a Boolean specifying whether a progress bar should be displayed.

Value

A list containing the following components:

lambda

An array of dimension (K x d x nsamp/thin) containing posterior samples of item discrimination parameters.

b

A matrix of dimension (K x nsamp/thin) containing posterior samples of item difficulty parameters.

theta

An array of dimension (N x d x nsamp/thin) containing posterior samples of respondent latent trait values.

Sigma

An array of dimension (d x d x nsamp/thin) containing posterior samples of the covariance matrix of latent traits (only if learn_Sigma=TRUE).

Omega

An array of dimension (d x d x nsamp/thin) containing posterior samples of the covariance matrix of item loadings (only if learn_Omega=TRUE).


IRTM documentation built on June 8, 2025, 10:46 a.m.