View source: R/original_par_2GM.R
| original_par_2GM | R Documentation | 
Recovering original parameters of two-component Gaussian mixture distribution from re-parameterized values
original_par_2GM(
  prob = 0.5,
  d = 0,
  sd_ratio = 1,
  overallmean = 0,
  overallsd = 1
)
prob | 
 The   | 
d | 
 The   | 
sd_ratio | 
 A numeric value of   | 
overallmean | 
 A numeric value of   | 
overallsd | 
 A numeric value of   | 
f(x)=\pi\times \phi(x | \mu_1, \sigma_1)+(1-\pi)\times \phi(x | \mu_2, \sigma_2)
, where \phi is a Gaussian component.
f(x)=2GM(x|\pi, \delta, \zeta, \bar{\mu}, \bar{\sigma})
, where \bar{\mu} is overall mean and \bar{\sigma} is overall standard deviation of the distribution.
1) Mean of the first Gaussian component (m1).
\mu_1=-(1-\pi)\delta\bar{\sigma}+\bar{\mu}
2) Mean of the second Gaussian component (m2).
\mu_2=\pi\delta\bar{\sigma}+\bar{\mu}
3) Standard deviation of the first Gaussian component (s1).
\sigma_1^2=\bar{\sigma}^2\left(\frac{1-\pi(1-\pi)\delta^2}{\pi+(1-\pi)\zeta^2}\right)
4) Standard deviation of the second Gaussian component (s2).
\sigma_2^2=\bar{\sigma}^2\left(\frac{1-\pi(1-\pi)\delta^2}{\frac{1}{\zeta^2}\pi+(1-\pi)}\right)=\zeta^2\sigma_1^2
This function returns a vector of length 4: c(m1,m2,s1,s2).
m1 | 
 The location parameter (mean) of the first Gaussian component.  | 
m2 | 
 The location parameter (mean) of the second Gaussian component.  | 
s1 | 
 The scale parameter (standard deviation) of the first Gaussian component.  | 
s2 | 
 The scale parameter (standard deviation) of the second Gaussian component.  | 
Seewoo Li cu@yonsei.ac.kr
Li, S. (2021). Using a two-component normal mixture distribution as a latent distribution in estimating parameters of item response models. Journal of Educational Evaluation, 34(4), 759-789.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.