knitr::opts_chunk$set(fig.width = 4, fig.height = 4, fig.align = "center", fig.pos = "!H", warning = FALSE, message = FALSE, echo = TRUE, eval = TRUE)
This first vignette demonstrates how to download and process time specific orbits. We'll use one of the Reference Ground Track (RGT) cycles and merge it with other data sources with the purpose to visualize specific areas.
We'll load one of the latest which is "RGT_cycle_14" (from December 22, 2021 to March 23, 2022). The documentation of the "RGT_cycle_14" data includes more details on how a user can come to the same data format for any of the RGT Cycles.
pkgs = c('IceSat2R', 'magrittr', 'mapview', 'sf', 'rnaturalearth', 'data.table', 'DT', 'stargazer') load_pkgs = lapply(pkgs, require, character.only = TRUE) # load required R packages sf::sf_use_s2(use_s2 = FALSE) # disable 's2' in this vignette mapview::mapviewOptions(leafletHeight = '600px', leafletWidth = '700px') # applies to all leaflet maps #............................. # load the 'RGT_cycle_14' data #............................. data(RGT_cycle_14) res_rgt_many = sf::st_as_sf(x = RGT_cycle_14, coords = c('longitude', 'latitude'), crs = 4326) res_rgt_many
We'll proceed to merge the orbit geometry points with the countries data of the rnaturalearth R package (1:110 million scales) and for this purpose, we keep only the "sovereignt" and "sov_a3" columns,
cntr = rnaturalearth::ne_countries(scale = 110, type = 'countries', returnclass = 'sf') cntr = cntr[, c('sovereignt', 'sov_a3')] cntr
We then merge the orbit points with the country geometries and specify also "left = TRUE" to keep also observations that do not intersect with the rnaturalearth countries data,
dat_both = suppressMessages(sf::st_join(x = res_rgt_many, y = cntr, join = sf::st_intersects, left = TRUE)) dat_both
The unique number of RGT's for "RGT_cycle_14" are
length(unique(dat_both$RGT))
We observe that from December 22, 2021 to March 23, 2022,
df_tbl = data.frame(table(dat_both$sovereignt), stringsAsFactors = F) colnames(df_tbl) = c('country', 'Num_IceSat2_points') df_subs = dat_both[, c('RGT', 'sovereignt')] df_subs$geometry = NULL df_subs = data.table::data.table(df_subs, stringsAsFactors = F) colnames(df_subs) = c('RGT', 'country') df_subs = split(df_subs, by = 'country') df_subs = lapply(df_subs, function(x) { unq_rgt = sort(unique(x$RGT)) items = ifelse(length(unq_rgt) < 5, length(unq_rgt), 5) concat = paste(unq_rgt[1:items], collapse = '-') iter_dat = data.table::setDT(list(country = unique(x$country), Num_RGTs = length(unq_rgt), first_5_RGTs = concat)) iter_dat }) df_subs = data.table::rbindlist(df_subs) df_tbl = merge(df_tbl, df_subs, by = 'country') df_tbl = df_tbl[order(df_tbl$Num_IceSat2_points, decreasing = T), ]
DT_dtbl = DT::datatable(df_tbl, rownames = FALSE)
DT_dtbl
all RGT's (1387 in number) intersect with "Antarctica" and almost all with "Russia".
The onshore and offshore number of ICESat-2 points and percentages for the "RGT_cycle_14" equal to
num_sea = sum(is.na(dat_both$sovereignt)) num_land = sum(!is.na(dat_both$sovereignt)) perc_sea = round(num_sea / nrow(dat_both), digits = 4) * 100.0 perc_land = round(num_land / nrow(dat_both), digits = 4) * 100.0 dtbl_land_sea = data.frame(list(percentage = c(perc_sea, perc_land), Num_Icesat2_points = c(num_sea, num_land))) row.names(dtbl_land_sea) = c('sea', 'land')
stargazer::stargazer(dtbl_land_sea, summary = FALSE, rownames = TRUE, header = FALSE, float = FALSE, table.placement = '!h', title = 'Land and Sea Proportions')
We can also observe the ICESat-2 "RGT_cycle_14" coverage based on the 1 to 10 million large scale Natural Earth Glaciated Areas data,
data(ne_10m_glaciated_areas)
We'll restrict the processing to the major polar glaciers (that have a name included),
ne_obj_subs = subset(ne_10m_glaciated_areas, !is.na(name)) ne_obj_subs = sf::st_make_valid(x = ne_obj_subs) # check validity of geometries ne_obj_subs
and we'll visualize the subset using the mapview package,
mpv = mapview::mapview(ne_obj_subs, color = 'cyan', col.regions = 'blue', alpha.regions = 0.5, legend = FALSE) mpv
We will see which orbits of the ICESat-2 "RGT_cycle_14" intersect with these major polar glaciers,
res_rgt_many$id_rgt = 1:nrow(res_rgt_many) # include 'id' for fast subsetting dat_glac_sf = suppressMessages(sf::st_join(x = ne_obj_subs, y = res_rgt_many, join = sf::st_intersects)) dat_glac = data.table::data.table(sf::st_drop_geometry(dat_glac_sf), stringsAsFactors = F) dat_glac = dat_glac[complete.cases(dat_glac), ] # keep non-NA observations dat_glac
We'll split the merged data by the 'name' of the glacier,
dat_glac_name = split(x = dat_glac, by = 'name') sum_stats_glac = lapply(dat_glac_name, function(x) { dtbl_glac = x[, .(name_glacier = unique(name), Num_unique_Dates = length(unique(Date)), Num_unique_RGTs = length(unique(RGT)))] dtbl_glac }) sum_stats_glac = data.table::rbindlist(sum_stats_glac) sum_stats_glac = sum_stats_glac[order(sum_stats_glac$Num_unique_RGTs, decreasing = T), ]
The next table shows the total number of days and RGTs for each one of the major polar glaciers,
stargazer::stargazer(sum_stats_glac, summary = FALSE, rownames = FALSE, header = FALSE, float = FALSE, table.placement = 'h', title = 'Days and RGTs')
We can restrict to one of the glaciers to visualize the ICESat-2 "RGT_cycle_14" coverage over this specific area ('Southern Patagonian Ice Field'),
sample_glacier = 'Southern Patagonian Ice Field' dat_glac_smpl = dat_glac_name[[sample_glacier]]
cols_display = c('name', 'day_of_year', 'Date', 'hour', 'minute', 'second', 'RGT') stargazer::stargazer(dat_glac_smpl[, ..cols_display], summary = FALSE, rownames = FALSE, header = FALSE, float = FALSE, table.placement = 'h', title = 'Southern Patagonian Ice Field')
and we gather the intersected RGT coordinates points with the selected glacier,
subs_rgts = subset(res_rgt_many, id_rgt %in% dat_glac_smpl$id_rgt) set.seed(1) samp_colrs = sample(x = grDevices::colors(distinct = TRUE), size = nrow(subs_rgts)) subs_rgts$color = samp_colrs
ne_obj_subs_smpl = subset(ne_obj_subs, name == sample_glacier) mpv_glacier = mapview::mapview(ne_obj_subs_smpl, color = 'cyan', col.regions = 'blue', alpha.regions = 0.5, legend = FALSE) mpv_RGTs = mapview::mapview(subs_rgts, color = subs_rgts$color, alpha.regions = 0.0, lwd = 6, legend = FALSE)
and visualize both the glacier and the subset of the intersected RGT coordinate points (of the different Days) in the same map. The clickable map and point popups include more information,
lft = mpv_glacier + mpv_RGTs lft
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.