mean | R Documentation |
This function calculates the sample Aumann mean of a single realization
formed by n nonempty compact real intervals drawn from a random
interval saved as an IntervalList
object.
## S4 method for signature 'IntervalList' mean(x)
x |
A list of intervals, that is, an |
Let \mathcal{X} be an interval-valued random set and let ≤ft(x_{1},x_{2},…,x_{n}\right) be a sample of n independent observations drawn from \mathcal{X}. Then, the sample Aumann mean (see Aumann, 1965) is defined as the following interval given by
\overline{x} = \frac{1}{n}∑_{i=1}^{n} x_{i}.
This function returns an IntervalData
object with the calculated
sample Aumann mean of the given n intervals, which is defined as
another nonempty compact real interval.
José García-García garciagarjose@uniovi.es
Aumann, R.J. (1965). Integrals of set-valued functions. Journal of Mathematical Analysis and Applications, 12(1):1-12. doi: 10.1016/0022-247X(65)90049-1.
Other sample dispersion and covariance measures such as sample Fréchet
variance and sample covariance can be calculated through var()
and cov()
functions, respectively.
## Some mean() trivial examples list <- IntervalList(c(1, 3), c(2, 5)) mean(list)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.